搜索
[Tutorialsplanet.NET] Udemy - Natural Language Processing (NLP) in Python with 8 Projects
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Natural Language Processing (NLP) in Python with 8 Projects
磁力链接/BT种子简介
种子哈希:
e2d3cfc417710b4def6154ec3c646c2d048bbafb
文件大小:
4.72G
已经下载:
12617
次
下载速度:
极快
收录时间:
2022-03-29
最近下载:
2025-10-12
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:E2D3CFC417710B4DEF6154EC3C646C2D048BBAFB
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
.1080p.h265-官方中字
ria kurumi
unofficial operation
sdde-761
wanz-721
suki
2243879
annette haven — soft places
videomagazine
hdt-0
海角母子
alcaraz
无码
pred-276
myfamilypies. .xxx.1080p.mp4 xc
031415_045
charlotta
完全插入
冰血暴第五季
ziz [ジズ]
lerkaasmr
model 系列
【2024】合集
chronicles live
fc2ppv-3276365
cervical
怪奇物语 第四季
家有爱女初长成
baseball bat
海角 勾引
文件列表
09 - Deep Learning Basics/002 Activation Function.mp4
164.3 MB
10 - Word Embeddings/001 Introduction to Word Embedding.mp4
153.5 MB
01 - Welcome/003 Introduction to NLP.mp4
140.0 MB
13 - Project 8 _ Automatic Text Generation using TensorFlow, Keras and LSTM/001 Text Generation Part I.mp4
119.8 MB
14 - FastText Library for Text Classification/006 Text Classification with Fasttext.mp4
111.5 MB
09 - Deep Learning Basics/001 The Neuron.mp4
107.0 MB
11 - Project 6 _ Text Classification with CNN/001 Convolutional Neural Network Part 1.mp4
101.0 MB
11 - Project 6 _ Text Classification with CNN/003 Spam Detection with CNN - I.mp4
95.9 MB
17 - Data Visualization with Matplotlib/006 Matplotlib Part 4.mp4
95.6 MB
17 - Data Visualization with Matplotlib/001 Matplotlib Part 1 - Functional Method.mp4
95.0 MB
03 - Basics of Natural Language Processing/008 Vocabulary and Matching Part - 1.mp4
88.5 MB
03 - Basics of Natural Language Processing/012 Named Entity Recognition.mp4
86.9 MB
11 - Project 6 _ Text Classification with CNN/002 Convolutional Neural Network Part 2.mp4
85.1 MB
02 - Installation & Setup/001 Course Installation.mp4
85.0 MB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/001 Review Classification Part -1.mp4
83.3 MB
16 - Data analysis with Pandas/003 DataFrames Part 1.mp4
81.8 MB
11 - Project 6 _ Text Classification with CNN/004 Spam Detection with CNN - II.mp4
81.8 MB
09 - Deep Learning Basics/004 Gradient Descent and Back-Propagation.mp4
78.4 MB
08 - Project 5 _ Twitter sentiment Analysis/003 Find Setiment from Tweets.mp4
77.8 MB
03 - Basics of Natural Language Processing/002 Tokenization Basic Part - 1.mp4
76.6 MB
03 - Basics of Natural Language Processing/009 Vocabulary and Matching Part - 2 (Rule Based).mp4
76.4 MB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/002 Review Classification Part - 2.mp4
75.9 MB
10 - Word Embeddings/002 Train Model for Embedding - I.mp4
74.9 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/004 Bag of Word Model.mp4
73.4 MB
16 - Data analysis with Pandas/002 Pandas Series.mp4
73.4 MB
12 - Project 7 _ Text Classification with RNN/004 Spam Detection with RNN.mp4
67.5 MB
04 - Project 1 _ Spam Message Classification/004 Apply Random Forest.mp4
67.0 MB
10 - Word Embeddings/004 Embeddings with Pretrained model.mp4
66.8 MB
07 - Project 4 _ Automated Text Summarization/001 Importing the libraries and Dataset.mp4
64.1 MB
12 - Project 7 _ Text Classification with RNN/003 LSTM and GRU.mp4
62.8 MB
18 - Appendix/002 Text File Processing - II.mp4
60.8 MB
07 - Project 4 _ Automated Text Summarization/003 Calculate Sentence Score.mp4
60.1 MB
16 - Data analysis with Pandas/008 Merging, Joining and Concatenating DataFrames.mp4
60.0 MB
16 - Data analysis with Pandas/005 DataFrames Part 3.mp4
59.2 MB
03 - Basics of Natural Language Processing/011 Parts of Speech Tagging.mp4
58.4 MB
16 - Data analysis with Pandas/004 DataFrames Part 2.mp4
58.0 MB
18 - Appendix/003 Text File Processing - III.mp4
57.4 MB
15 - Data analysis with Numpy/003 Numpy Arrays Part 2.mp4
56.6 MB
17 - Data Visualization with Matplotlib/004 Matplotlib Part 2 - Figure size, Aspect ratio and DPI.mp4
56.6 MB
03 - Basics of Natural Language Processing/013 Sentence Segmentation.mp4
55.5 MB
09 - Deep Learning Basics/003 Cost Function.mp4
54.3 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/003 Cleaning Text Data with NLTK - 2.mp4
53.8 MB
10 - Word Embeddings/003 Train Model for Embedding - II.mp4
52.9 MB
03 - Basics of Natural Language Processing/003 Tokenization Basic Part - 2.mp4
52.8 MB
04 - Project 1 _ Spam Message Classification/002 Data Exploration & Preprocessing.mp4
52.7 MB
17 - Data Visualization with Matplotlib/005 Matplotlib Part 3.mp4
52.5 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/002 Cleaning Text Data with NLTK - 1.mp4
52.0 MB
08 - Project 5 _ Twitter sentiment Analysis/001 Setting up Twitter Developer application.mp4
51.7 MB
16 - Data analysis with Pandas/007 Groupby Method.mp4
51.5 MB
03 - Basics of Natural Language Processing/001 Section _ Introduction.mp4
51.4 MB
13 - Project 8 _ Automatic Text Generation using TensorFlow, Keras and LSTM/002 Text Generation Part II.mp4
49.5 MB
16 - Data analysis with Pandas/010 Reading and Writing Files in Pandas.mp4
48.7 MB
14 - FastText Library for Text Classification/004 Create Linux Virtual Machine.mp4
48.6 MB
18 - Appendix/005 Working with PDF File - I.mp4
47.8 MB
15 - Data analysis with Numpy/005 Numpy Indexing and Selection Part 1.mp4
47.3 MB
17 - Data Visualization with Matplotlib/002 Matplotlib Part 1 - Object Oriented Method.mp4
46.1 MB
14 - FastText Library for Text Classification/005 Install fasttext library.mp4
45.2 MB
04 - Project 1 _ Spam Message Classification/001 Business Problem & Dataset.mp4
44.7 MB
07 - Project 4 _ Automated Text Summarization/002 Create Word Frequency Counter.mp4
44.5 MB
04 - Project 1 _ Spam Message Classification/003 Split Data in Training & Testing.mp4
42.2 MB
18 - Appendix/001 Text File Processing - I.mp4
41.6 MB
12 - Project 7 _ Text Classification with RNN/001 Introduction to Recurrent Neural Networks.mp4
41.5 MB
12 - Project 7 _ Text Classification with RNN/002 Vanishing Gradient Problem.mp4
40.8 MB
16 - Data analysis with Pandas/009 Pandas Operations.mp4
40.7 MB
17 - Data Visualization with Matplotlib/003 Matplotlib Part 2 - Subplots Method.mp4
39.6 MB
01 - Welcome/001 Course Overview.mp4
37.2 MB
16 - Data analysis with Pandas/006 Missing Data.mp4
37.0 MB
04 - Project 1 _ Spam Message Classification/005 Apply Support vector Machine (SVM).mp4
35.4 MB
03 - Basics of Natural Language Processing/010 Vocabulary and Matching Part - 3 (Phrase Based).mp4
34.7 MB
03 - Basics of Natural Language Processing/007 Stop Words.mp4
34.3 MB
14 - FastText Library for Text Classification/003 Virtual Box Installation.mp4
33.7 MB
08 - Project 5 _ Twitter sentiment Analysis/002 Fetch Tweet from Tweeter server.mp4
32.5 MB
15 - Data analysis with Numpy/007 Numpy Operations.mp4
30.7 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/005 Apply Naive Bayes Algorithm.mp4
30.2 MB
15 - Data analysis with Numpy/004 Numpy Arrays Part 3.mp4
28.6 MB
07 - Project 4 _ Automated Text Summarization/004 Extract summary of document.mp4
28.5 MB
03 - Basics of Natural Language Processing/005 Stemming & Lemmatization - 1.mp4
28.1 MB
15 - Data analysis with Numpy/006 Numpy Indexing and Selection Part 2.mp4
27.9 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/001 Business Problem.mp4
27.0 MB
03 - Basics of Natural Language Processing/006 Stemming & Lemmatization - 2.mp4
24.6 MB
15 - Data analysis with Numpy/002 Numpy Arrays Part 1.mp4
17.6 MB
15 - Data analysis with Numpy/001 Introduction to NumPy.mp4
17.1 MB
04 - Project 1 _ Spam Message Classification/006 Predict Testing Data both model.mp4
17.0 MB
18 - Appendix/004 Text File Processing - IV.mp4
16.2 MB
03 - Basics of Natural Language Processing/004 Tokenization Basic Part - 3.mp4
13.4 MB
16 - Data analysis with Pandas/001 Pandas Introduction.mp4
13.1 MB
14 - FastText Library for Text Classification/001 fasttext Installation steps [Video].mp4
8.5 MB
01 - Welcome/002 Reviews UPDATE.mp4
5.6 MB
04 - Project 1 _ Spam Message Classification/25152746-spam.tsv
513.9 kB
11 - Project 6 _ Text Classification with CNN/25153370-spam.csv
503.7 kB
12 - Project 7 _ Text Classification with RNN/25153382-spam.csv
503.7 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/25152804-imdb-labelled.txt
85.3 kB
14 - FastText Library for Text Classification/27130276-reviews.txt
71.8 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/25152756-Restaurant-Reviews.tsv
61.3 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/25152808-yelp-labelled.txt
61.3 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/25152800-amazon-cells-labelled.txt
58.2 kB
14 - FastText Library for Text Classification/006 Text Classification with Fasttext_en.vtt
16.1 kB
03 - Basics of Natural Language Processing/012 Named Entity Recognition_en.vtt
13.2 kB
13 - Project 8 _ Automatic Text Generation using TensorFlow, Keras and LSTM/001 Text Generation Part I_en.vtt
12.9 kB
02 - Installation & Setup/001 Course Installation_en.vtt
12.5 kB
04 - Project 1 _ Spam Message Classification/004 Apply Random Forest_en.vtt
12.3 kB
10 - Word Embeddings/001 Introduction to Word Embedding_en.vtt
12.0 kB
18 - Appendix/003 Text File Processing - III_en.vtt
11.4 kB
16 - Data analysis with Pandas/003 DataFrames Part 1_en.vtt
11.3 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/001 Review Classification Part -1_en.vtt
11.1 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/004 Bag of Word Model_en.vtt
10.7 kB
11 - Project 6 _ Text Classification with CNN/003 Spam Detection with CNN - I_en.vtt
10.6 kB
08 - Project 5 _ Twitter sentiment Analysis/003 Find Setiment from Tweets_en.vtt
10.4 kB
16 - Data analysis with Pandas/002 Pandas Series_en.vtt
10.3 kB
17 - Data Visualization with Matplotlib/001 Matplotlib Part 1 - Functional Method_en.vtt
10.1 kB
03 - Basics of Natural Language Processing/002 Tokenization Basic Part - 1_en.vtt
10.0 kB
03 - Basics of Natural Language Processing/008 Vocabulary and Matching Part - 1_en.vtt
9.9 kB
11 - Project 6 _ Text Classification with CNN/004 Spam Detection with CNN - II_en.vtt
9.8 kB
04 - Project 1 _ Spam Message Classification/002 Data Exploration & Preprocessing_en.vtt
9.8 kB
16 - Data analysis with Pandas/004 DataFrames Part 2_en.vtt
9.7 kB
10 - Word Embeddings/002 Train Model for Embedding - I_en.vtt
9.5 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/002 Review Classification Part - 2_en.vtt
9.5 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/002 Cleaning Text Data with NLTK - 1_en.vtt
9.2 kB
03 - Basics of Natural Language Processing/013 Sentence Segmentation_en.vtt
9.2 kB
15 - Data analysis with Numpy/003 Numpy Arrays Part 2_en.vtt
9.2 kB
16 - Data analysis with Pandas/005 DataFrames Part 3_en.vtt
9.1 kB
03 - Basics of Natural Language Processing/009 Vocabulary and Matching Part - 2 (Rule Based)_en.vtt
9.0 kB
14 - FastText Library for Text Classification/004 Create Linux Virtual Machine_en.vtt
8.9 kB
17 - Data Visualization with Matplotlib/006 Matplotlib Part 4_en.vtt
8.8 kB
03 - Basics of Natural Language Processing/003 Tokenization Basic Part - 2_en.vtt
8.6 kB
09 - Deep Learning Basics/002 Activation Function_en.vtt
8.6 kB
18 - Appendix/005 Working with PDF File - I_en.vtt
8.5 kB
18 - Appendix/002 Text File Processing - II_en.vtt
8.4 kB
03 - Basics of Natural Language Processing/011 Parts of Speech Tagging_en.vtt
8.2 kB
04 - Project 1 _ Spam Message Classification/001 Business Problem & Dataset_en.vtt
8.2 kB
18 - Appendix/001 Text File Processing - I_en.vtt
7.9 kB
07 - Project 4 _ Automated Text Summarization/001 Importing the libraries and Dataset_en.vtt
7.8 kB
16 - Data analysis with Pandas/008 Merging, Joining and Concatenating DataFrames_en.vtt
7.8 kB
08 - Project 5 _ Twitter sentiment Analysis/001 Setting up Twitter Developer application_en.vtt
7.8 kB
07 - Project 4 _ Automated Text Summarization/002 Create Word Frequency Counter_en.vtt
7.6 kB
01 - Welcome/003 Introduction to NLP_en.vtt
7.6 kB
16 - Data analysis with Pandas/009 Pandas Operations_en.vtt
7.4 kB
16 - Data analysis with Pandas/010 Reading and Writing Files in Pandas_en.vtt
7.3 kB
16 - Data analysis with Pandas/007 Groupby Method_en.vtt
7.3 kB
10 - Word Embeddings/004 Embeddings with Pretrained model_en.vtt
7.1 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/003 Cleaning Text Data with NLTK - 2_en.vtt
7.0 kB
15 - Data analysis with Numpy/005 Numpy Indexing and Selection Part 1_en.vtt
7.0 kB
04 - Project 1 _ Spam Message Classification/003 Split Data in Training & Testing_en.vtt
7.0 kB
12 - Project 7 _ Text Classification with RNN/004 Spam Detection with RNN_en.vtt
6.9 kB
17 - Data Visualization with Matplotlib/004 Matplotlib Part 2 - Figure size, Aspect ratio and DPI_en.vtt
6.9 kB
03 - Basics of Natural Language Processing/007 Stop Words_en.vtt
6.9 kB
03 - Basics of Natural Language Processing/005 Stemming & Lemmatization - 1_en.vtt
6.7 kB
07 - Project 4 _ Automated Text Summarization/003 Calculate Sentence Score_en.vtt
6.7 kB
10 - Word Embeddings/003 Train Model for Embedding - II_en.vtt
6.7 kB
13 - Project 8 _ Automatic Text Generation using TensorFlow, Keras and LSTM/002 Text Generation Part II_en.vtt
6.5 kB
16 - Data analysis with Pandas/006 Missing Data_en.vtt
6.4 kB
09 - Deep Learning Basics/001 The Neuron_en.vtt
6.1 kB
17 - Data Visualization with Matplotlib/002 Matplotlib Part 1 - Object Oriented Method_en.vtt
6.0 kB
14 - FastText Library for Text Classification/003 Virtual Box Installation_en.vtt
6.0 kB
14 - FastText Library for Text Classification/005 Install fasttext library_en.vtt
6.0 kB
03 - Basics of Natural Language Processing/006 Stemming & Lemmatization - 2_en.vtt
5.1 kB
17 - Data Visualization with Matplotlib/003 Matplotlib Part 2 - Subplots Method_en.vtt
5.0 kB
11 - Project 6 _ Text Classification with CNN/001 Convolutional Neural Network Part 1_en.vtt
5.0 kB
04 - Project 1 _ Spam Message Classification/005 Apply Support vector Machine (SVM)_en.vtt
5.0 kB
17 - Data Visualization with Matplotlib/005 Matplotlib Part 3_en.vtt
4.9 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/005 Apply Naive Bayes Algorithm_en.vtt
4.8 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/001 Business Problem_en.vtt
4.6 kB
11 - Project 6 _ Text Classification with CNN/002 Convolutional Neural Network Part 2_en.vtt
4.5 kB
15 - Data analysis with Numpy/004 Numpy Arrays Part 3_en.vtt
4.3 kB
15 - Data analysis with Numpy/006 Numpy Indexing and Selection Part 2_en.vtt
4.3 kB
01 - Welcome/001 Course Overview_en.vtt
4.1 kB
03 - Basics of Natural Language Processing/010 Vocabulary and Matching Part - 3 (Phrase Based)_en.vtt
4.1 kB
08 - Project 5 _ Twitter sentiment Analysis/002 Fetch Tweet from Tweeter server_en.vtt
4.1 kB
09 - Deep Learning Basics/004 Gradient Descent and Back-Propagation_en.vtt
4.0 kB
07 - Project 4 _ Automated Text Summarization/004 Extract summary of document_en.vtt
3.8 kB
04 - Project 1 _ Spam Message Classification/006 Predict Testing Data both model_en.vtt
3.8 kB
12 - Project 7 _ Text Classification with RNN/003 LSTM and GRU_en.vtt
3.8 kB
18 - Appendix/004 Text File Processing - IV_en.vtt
3.5 kB
15 - Data analysis with Numpy/007 Numpy Operations_en.vtt
3.5 kB
02 - Installation & Setup/004 Links to Notebooks (More explanatory notebook for refrence).html
3.5 kB
02 - Installation & Setup/003 Links to Notebooks (As taught in Lectures).html
3.3 kB
15 - Data analysis with Numpy/002 Numpy Arrays Part 1_en.vtt
3.3 kB
03 - Basics of Natural Language Processing/004 Tokenization Basic Part - 3_en.vtt
3.3 kB
18 - Appendix/25154140-sample.pdf
3.0 kB
03 - Basics of Natural Language Processing/001 Section _ Introduction_en.vtt
2.8 kB
09 - Deep Learning Basics/003 Cost Function_en.vtt
2.8 kB
14 - FastText Library for Text Classification/001 fasttext Installation steps [Video]_en.vtt
2.2 kB
12 - Project 7 _ Text Classification with RNN/002 Vanishing Gradient Problem_en.vtt
2.1 kB
12 - Project 7 _ Text Classification with RNN/001 Introduction to Recurrent Neural Networks_en.vtt
2.1 kB
01 - Welcome/002 Reviews UPDATE_en.vtt
1.7 kB
01 - Welcome/004 Course FAQs.html
1.6 kB
15 - Data analysis with Numpy/001 Introduction to NumPy_en.vtt
949 Bytes
02 - Installation & Setup/002 Local Installation Steps.html
860 Bytes
16 - Data analysis with Pandas/001 Pandas Introduction_en.vtt
707 Bytes
14 - FastText Library for Text Classification/002 fasttext Installation steps [Text].html
466 Bytes
03 - Basics of Natural Language Processing/external-assets-links.txt
226 Bytes
04 - Project 1 _ Spam Message Classification/external-assets-links.txt
134 Bytes
10 - Word Embeddings/[Tutorialsplanet.NET].url
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
02 - Installation & Setup/external-assets-links.txt
99 Bytes
02 - Installation & Setup/24056952-requirements.txt
12 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!