搜索
[DesireCourse.Net] Udemy - The Complete Pandas Bootcamp Master your Data in Python
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - The Complete Pandas Bootcamp Master your Data in Python
磁力链接/BT种子简介
种子哈希:
d05763701ec153bc6a3710934af28050cda2a9a9
文件大小:
9.97G
已经下载:
475
次
下载速度:
极快
收录时间:
2020-03-23
最近下载:
2025-03-26
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:D05763701EC153BC6A3710934AF28050CDA2A9A9
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
ふくびき!トライアング
丈母娘
脱衣舞
godzilla king of the monsters 2019
tiffany ray
dap
spop 蕾雅
圣水
91夜熟女
ipzz-674
代驾司机迷玩自家女友
mission: impossible - fallout
ssni-071
韩国巨乳美女
台湾色情
2185133
dd
极品嫩模
抖音李玥玥
fc2ppv-1593184
玉足足交射精
被体液浸泡在快感中达到高潮的美妙身体
megapack sorefordays
狮子座
小腹被
ultrafilms.23.09.01
outlander. s05
新仙鹤神针
teenage mutant ninja turtles mutant mayhem 2023
episode 18 - caged
文件列表
22. Python Basics/7. Data Types Lists (Part 2).mp4
140.9 MB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/4. Olympic Medal Tables (Solution Part 2).mp4
135.0 MB
22. Python Basics/18. Visualization with Matplotlib.mp4
130.3 MB
19. Time Series Basics/5. Creating a customized DatetimeIndex with pd.date_range().mp4
120.2 MB
3. Pandas Basics (DataFrame Basics I)/5. Coding Exercise 0 Coding the Video Lectures.mp4
114.6 MB
8. Visualization with Matplotlib/3. Customization of Plots.mp4
108.0 MB
14. Reshaping and Pivoting DataFrames/6. pd.crosstab().mp4
104.3 MB
12. Merging, Joining, and Concatenating Data/13. Joining on different Column Names Indexes.mp4
100.0 MB
3. Pandas Basics (DataFrame Basics I)/17. Slicing Rows and Columns with loc (label-based indexing).mp4
95.8 MB
10. Importing Data/1. Importing csv-files with pd.read_csv.mp4
95.3 MB
11. Cleaning Data/5. Detection of missing Values.mp4
93.7 MB
11. Cleaning Data/10. Handling Removing Duplicates.mp4
93.0 MB
12. Merging, Joining, and Concatenating Data/2. Adding Rows with append() and pd.concat() (Part 1).mp4
92.3 MB
1. Getting Started/5. Installation of Anaconda.mp4
90.5 MB
22. Python Basics/11. Conditional Statements (if, elif, else, while).mp4
90.2 MB
19. Time Series Basics/7. Downsampling Time Series with resample() (Part 1).mp4
89.7 MB
11. Cleaning Data/6. Removing missing values.mp4
89.6 MB
15. Data Preparation and Feature Creation/8. Discretization and Binning with pd.qcut().mp4
89.5 MB
16. Advanced Visualization with Seaborn/3. Categorical Plots.mp4
89.3 MB
23. The Numpy Package/11. Visualization and (Linear) Regression.mp4
88.7 MB
13. GroupBy Operations/15. Coding Exercise 13 (Solution).mp4
85.5 MB
11. Cleaning Data/2. String Operations.mp4
84.8 MB
12. Merging, Joining, and Concatenating Data/6. Outer Joins with merge().mp4
84.0 MB
16. Advanced Visualization with Seaborn/4. Joint Plots Regression Plots.mp4
83.5 MB
11. Cleaning Data/9. Detection of Duplicates.mp4
83.1 MB
13. GroupBy Operations/12. stack() and unstack().mp4
82.6 MB
20. Time Series Advanced Financial Time Series/12. Filling NA Values with bfill, ffill and interpolation.mp4
82.3 MB
22. Python Basics/5. Data Types Strings.mp4
81.6 MB
4. Pandas Series and Index Objects/5. EXCURSUS Updating Pandas Anaconda.mp4
80.9 MB
4. Pandas Series and Index Objects/19. Changing Row Index with set_index() and reset_index().mp4
78.7 MB
7. DataFrame Basics III/9. User-defined Functions with apply(), map() and applymap().mp4
77.9 MB
10. Importing Data/4. NEW Importing Data from Excel with pd.read_excel().mp4
77.5 MB
23. The Numpy Package/5. Numpy Arrays Indexing and Slicing of multi-dimensional Arrays.mp4
77.2 MB
15. Data Preparation and Feature Creation/6. Discretization and Binning with pd.cut() (Part 1).mp4
76.6 MB
4. Pandas Series and Index Objects/3. Analyzing Numerical Series with unique(), nunique() and value_counts().mp4
76.3 MB
7. DataFrame Basics III/11. Hierarchical Indexing (Part 2).mp4
76.1 MB
7. DataFrame Basics III/10. Hierarchical Indexing (Part 1).mp4
76.1 MB
10. Importing Data/5. Importing messy Data from Excel with pd.read_excel().mp4
76.0 MB
20. Time Series Advanced Financial Time Series/3. NEW Importing Stock Price Data from Yahoo Finance (it still works!).mp4
75.4 MB
13. GroupBy Operations/5. split-apply-combine applied.mp4
74.1 MB
8. Visualization with Matplotlib/2. The plot() method.mp4
73.7 MB
14. Reshaping and Pivoting DataFrames/2. Transposing Rows and Columns.mp4
71.8 MB
11. Cleaning Data/1. First Inspection & Handling of inconsistent Data.mp4
71.6 MB
23. The Numpy Package/7. Generating Random Numbers.mp4
70.8 MB
1. Getting Started/7. How to use Jupyter Notebooks.mp4
69.5 MB
4. Pandas Series and Index Objects/9. Indexing and Slicing Pandas Series.mp4
69.4 MB
5. DataFrame Basics II/5. Advanced Filtering with between(), isin() and ~.mp4
68.9 MB
1. Getting Started/6. Opening a Jupyter Notebook.mp4
68.2 MB
23. The Numpy Package/2. Numpy Arrays Vectorization.mp4
67.9 MB
22. Python Basics/15. User Defined Functions (Part 1).mp4
67.5 MB
15. Data Preparation and Feature Creation/2. Arithmetic Operations (Part 1).mp4
66.6 MB
10. Importing Data/2. Importing messy csv-files with pd.read_csv.mp4
66.3 MB
3. Pandas Basics (DataFrame Basics I)/9. Explore your own Dataset Coding Exercise 1 (Intro).mp4
66.2 MB
22. Python Basics/6. Data Types Lists (Part 1).mp4
65.7 MB
3. Pandas Basics (DataFrame Basics I)/19. Summary and Outlook.mp4
65.2 MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/3. Chained Indexing How you should NOT do it (Part 1).mp4
63.0 MB
22. Python Basics/10. Operators & Booleans.mp4
62.4 MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/4. Chained Indexing How you should NOT do it (Part 2).mp4
61.7 MB
15. Data Preparation and Feature Creation/3. Arithmetic Operations (Part 2).mp4
61.3 MB
22. Python Basics/12. For Loops.mp4
61.3 MB
14. Reshaping and Pivoting DataFrames/4. Limits of pivot().mp4
61.1 MB
7. DataFrame Basics III/15. Coding Exercise 8 (Solution).mp4
61.0 MB
14. Reshaping and Pivoting DataFrames/5. pivot_table().mp4
60.9 MB
10. Importing Data/6. Importing Data from the Web with pd.read_html().mp4
60.8 MB
19. Time Series Basics/2. Converting strings to datetime objects with pd.to_datetime().mp4
60.8 MB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/2. Olympic Medal Tables (Instruction & Hints).mp4
60.5 MB
5. DataFrame Basics II/15. Coding Exercise 5 (Solution).mp4
60.5 MB
7. DataFrame Basics III/5. Summary Statistics and Accumulations.mp4
60.3 MB
22. Python Basics/16. User Defined Functions (Part 2).mp4
60.2 MB
12. Merging, Joining, and Concatenating Data/3. Adding Rows with pd.concat() (Part 2).mp4
59.7 MB
3. Pandas Basics (DataFrame Basics I)/4. First Steps (Inspection of Data, Part 2).mp4
59.5 MB
15. Data Preparation and Feature Creation/10. Scaling Standardization.mp4
59.1 MB
14. Reshaping and Pivoting DataFrames/3. Pivoting DataFrames with pivot().mp4
58.6 MB
15. Data Preparation and Feature Creation/11. Creating Dummy Variables.mp4
57.9 MB
7. DataFrame Basics III/13. String Operations (Part 2).mp4
57.9 MB
3. Pandas Basics (DataFrame Basics I)/7. Make it easy TAB Completion and Tooltip.mp4
57.1 MB
7. DataFrame Basics III/2. Sorting DataFrames with sort_index() and sort_values().mp4
57.0 MB
3. Pandas Basics (DataFrame Basics I)/13. Selecting Rows with iloc (position-based indexing).mp4
56.6 MB
20. Time Series Advanced Financial Time Series/9. Financial Time Series - Return and Risk.mp4
56.2 MB
23. The Numpy Package/3. Numpy Arrays Indexing and Slicing.mp4
56.0 MB
5. DataFrame Basics II/2. Filtering DataFrames by one Condition.mp4
55.5 MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/2. Best Practice (How you should do it).mp4
55.2 MB
22. Python Basics/17. User Defined Functions (Part 3).mp4
54.7 MB
10. Importing Data/3. OLD Importing Data from Excel with pd.read_excel().mp4
54.4 MB
3. Pandas Basics (DataFrame Basics I)/3. First Steps (Inspection of Data, Part 1).mp4
54.0 MB
3. Pandas Basics (DataFrame Basics I)/6. Built-in Functions, Attributes and Methods with Pandas.mp4
53.1 MB
19. Time Series Basics/10. Advanced Indexing with reindex().mp4
53.0 MB
13. GroupBy Operations/3. Splitting with many Keys.mp4
52.3 MB
23. The Numpy Package/8. Performance Issues.mp4
52.3 MB
5. DataFrame Basics II/8. Removing Rows.mp4
52.0 MB
22. Python Basics/4. Data Types Integers and Floats.mp4
51.9 MB
14. Reshaping and Pivoting DataFrames/7. melting DataFrames with melt().mp4
51.9 MB
19. Time Series Basics/8. Downsampling Time Series with resample (Part 2).mp4
51.5 MB
1. Getting Started/1. Overview Student FAQ.mp4
50.8 MB
19. Time Series Basics/4. Indexing and Slicing Time Series.mp4
50.5 MB
13. GroupBy Operations/4. split-apply-combine explained.mp4
49.4 MB
13. GroupBy Operations/2. Understanding the GroupBy Object.mp4
48.5 MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/6. Simple Rules what to do when....mp4
48.1 MB
11. Cleaning Data/4. Intro NA values missing values.mp4
47.9 MB
23. The Numpy Package/9. Case Study Numpy vs. Python Standard Library.mp4
47.8 MB
11. Cleaning Data/13. Categorical Data.mp4
47.7 MB
23. The Numpy Package/13. Numpy Quiz Solution.mp4
47.7 MB
23. The Numpy Package/10. Summary Statistics.mp4
47.0 MB
13. GroupBy Operations/9. Replacing NA Values by group-specific Values.mp4
46.9 MB
20. Time Series Advanced Financial Time Series/11. Helpful DatetimeIndex Attributes and Methods.mp4
46.5 MB
20. Time Series Advanced Financial Time Series/5. Normalizing Time Series to a Base Value (100).mp4
46.4 MB
23. The Numpy Package/6. Numpy Arrays Boolean Indexing.mp4
46.4 MB
11. Cleaning Data/11. Detection of Outliers.mp4
46.2 MB
20. Time Series Advanced Financial Time Series/8. Measuring Stock Performance with MEAN Returns and STD of Returns.mp4
46.0 MB
1. Getting Started/2. Tips How to get the most out of this course.mp4
45.7 MB
7. DataFrame Basics III/3. Ranking DataFrames with rank().mp4
45.6 MB
4. Pandas Series and Index Objects/17. First Steps with Pandas Index Objects.mp4
45.2 MB
4. Pandas Series and Index Objects/6. Analyzing non-numerical Series with unique(), nunique(), value_counts().mp4
45.0 MB
16. Advanced Visualization with Seaborn/5. Matrixplots Heatmaps.mp4
44.9 MB
13. GroupBy Operations/10. Generalizing split-apply-combine with apply().mp4
44.9 MB
15. Data Preparation and Feature Creation/4. TransformationMapping with map().mp4
44.8 MB
20. Time Series Advanced Financial Time Series/4. Initial Inspection and Visualization.mp4
44.4 MB
22. Python Basics/8. Data Types Tuples.mp4
43.8 MB
19. Time Series Basics/1. Importing Time Series Data from csv-files.mp4
43.8 MB
4. Pandas Series and Index Objects/10. Sorting of Series and Introduction to the inplace - parameter.mp4
43.4 MB
7. DataFrame Basics III/12. String Operations (Part 1).mp4
43.2 MB
23. The Numpy Package/1. Introduction to Numpy Arrays.mp4
43.1 MB
20. Time Series Advanced Financial Time Series/7. The methods diff() and pct_change().mp4
42.2 MB
7. DataFrame Basics III/8. Coding Exercise 7 (Solution).mp4
41.7 MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/9. Coding Exercise 6 (Solution).mp4
41.3 MB
15. Data Preparation and Feature Creation/9. Floors and Caps.mp4
41.2 MB
3. Pandas Basics (DataFrame Basics I)/22. Coding Exercise 2 (Solution).mp4
41.0 MB
12. Merging, Joining, and Concatenating Data/4. Arithmetic with Pandas Objects Data Alignment.mp4
40.8 MB
11. Cleaning Data/3. Changing Datatype of Columns with astype().mp4
40.7 MB
19. Time Series Basics/9. The PeriodIndex object.mp4
40.7 MB
12. Merging, Joining, and Concatenating Data/14. Joining on more than one Column.mp4
40.6 MB
4. Pandas Series and Index Objects/16. Coding Exercise 3 (Solution).mp4
40.5 MB
3. Pandas Basics (DataFrame Basics I)/11. Selecting Columns.mp4
40.4 MB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/3. Olympic Medal Tables (Solution Part 1).mp4
40.3 MB
22. Python Basics/20. Python Basics Quiz Solution.mp4
40.1 MB
22. Python Basics/14. Generating Random Numbers.mp4
40.0 MB
4. Pandas Series and Index Objects/7. Creating Pandas Series (Part 1).mp4
39.9 MB
4. Pandas Series and Index Objects/13. Manipulating Pandas Series.mp4
39.7 MB
8. Visualization with Matplotlib/9. Coding Exercise 9 (Solution).mp4
38.6 MB
22. Python Basics/13. Key words break, pass, continue.mp4
38.5 MB
8. Visualization with Matplotlib/7. Scatterplots.mp4
37.9 MB
5. DataFrame Basics II/7. Removing Columns.mp4
37.8 MB
4. Pandas Series and Index Objects/2. First Steps with Pandas Series.mp4
37.7 MB
20. Time Series Advanced Financial Time Series/6. The shift() method.mp4
37.5 MB
23. The Numpy Package/4. Numpy Arrays Shape and Dimensions.mp4
37.2 MB
12. Merging, Joining, and Concatenating Data/15. pd.merge() and join().mp4
37.2 MB
13. GroupBy Operations/8. Transformation with transform().mp4
37.1 MB
19. Time Series Basics/3. Initial Analysis Visualization of Time Series.mp4
36.7 MB
5. DataFrame Basics II/10. Creating Columns based on other Columns.mp4
36.2 MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/5. View vs. Copy.mp4
36.2 MB
22. Python Basics/2. First Steps.mp4
35.9 MB
8. Visualization with Matplotlib/5. Histograms (Part 2).mp4
35.8 MB
4. Pandas Series and Index Objects/21. Renaming Index & Column Labels with rename().mp4
35.2 MB
15. Data Preparation and Feature Creation/5. Conditional Transformation.mp4
35.0 MB
13. GroupBy Operations/11. Hierarchical Indexing with Groupby.mp4
34.5 MB
15. Data Preparation and Feature Creation/7. Discretization and Binning with pd.cut() (Part 2).mp4
34.3 MB
7. DataFrame Basics III/4. nunique() and nlargest() nsmallest() with DataFrames.mp4
34.2 MB
12. Merging, Joining, and Concatenating Data/8. Outer Joins (without Intersection) with merge().mp4
33.0 MB
22. Python Basics/3. Variables.mp4
33.0 MB
1. Getting Started/3. Did you know that....mp4
32.8 MB
5. DataFrame Basics II/4. Filtering DataFrames by many Conditions (OR).mp4
32.3 MB
3. Pandas Basics (DataFrame Basics I)/16. Selecting Rows with loc (label-based indexing).mp4
31.8 MB
13. GroupBy Operations/7. Advanced aggregation with agg().mp4
31.7 MB
3. Pandas Basics (DataFrame Basics I)/10. Explore your own Dataset Coding Exercise 1 (Solution).mp4
31.3 MB
11. Cleaning Data/12. Handling Removing Outliers.mp4
31.1 MB
15. Data Preparation and Feature Creation/12. String Operations.mp4
31.1 MB
4. Pandas Series and Index Objects/12. idxmin() and idxmax().mp4
30.1 MB
12. Merging, Joining, and Concatenating Data/12. Right Joins with merge().mp4
28.7 MB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/5. Olympic Medal Tables (Solution Part 3).mp4
28.3 MB
4. Pandas Series and Index Objects/8. Creating Pandas Series (Part 2).mp4
28.0 MB
4. Pandas Series and Index Objects/24. Coding Exercise 4 (Solution).mp4
27.6 MB
3. Pandas Basics (DataFrame Basics I)/14. Slicing Rows and Columns with iloc (position-based indexing).mp4
27.2 MB
5. DataFrame Basics II/3. Filtering DataFrames by many Conditions (AND).mp4
27.2 MB
3. Pandas Basics (DataFrame Basics I)/1. Intro to Tabular Data Pandas.mp4
27.1 MB
20. Time Series Advanced Financial Time Series/10. Financial Time Series - Covariance and Correlation.mp4
27.0 MB
11. Cleaning Data/7. Replacing missing values.mp4
25.8 MB
8. Visualization with Matplotlib/4. Histograms (Part 1).mp4
25.8 MB
12. Merging, Joining, and Concatenating Data/11. Left Joins with merge().mp4
25.2 MB
7. DataFrame Basics III/6. The agg() method.mp4
23.9 MB
16. Advanced Visualization with Seaborn/2. First Steps in Seaborn.mp4
23.2 MB
3. Pandas Basics (DataFrame Basics I)/12. Selecting Rows with Square Brackets (not advisable).mp4
23.1 MB
12. Merging, Joining, and Concatenating Data/9. Left Joins (without Intersection) with merge().mp4
22.9 MB
20. Time Series Advanced Financial Time Series/2. NEW Getting Ready (Installing required package).mp4
22.8 MB
22. Python Basics/9. Data Types Sets.mp4
22.5 MB
4. Pandas Series and Index Objects/20. Changing Column Labels.mp4
22.2 MB
11. Cleaning Data/8. Intro Duplicates.mp4
21.2 MB
8. Visualization with Matplotlib/6. Barcharts and Piecharts.mp4
21.0 MB
5. DataFrame Basics II/9. Adding new Columns to a DataFrame.mp4
18.7 MB
5. DataFrame Basics II/6. any() and all().mp4
18.4 MB
4. Pandas Series and Index Objects/11. nlargest() and nsmallest().mp4
17.6 MB
12. Merging, Joining, and Concatenating Data/7. Inner Joins with merge().mp4
16.3 MB
12. Merging, Joining, and Concatenating Data/10. Right Joins (without Intersection) with merge().mp4
15.8 MB
15. Data Preparation and Feature Creation/13. Coding Exercise 15 (Intro).mp4
15.8 MB
4. Pandas Series and Index Objects/18. Creating Index Objects from Scratch.mp4
15.8 MB
3. Pandas Basics (DataFrame Basics I)/9.1 Pandas-Bootcamp-exc.zip.zip
15.7 MB
4. Pandas Series and Index Objects/15. Coding Exercise 3 (Intro).mp4
14.8 MB
5. DataFrame Basics II/11. Adding Columns with insert().mp4
13.7 MB
10. Importing Data/7. Coding Exercise 10 (Intro).mp4
13.0 MB
19. Time Series Basics/6. More on pd.date_range().mp4
13.0 MB
13. GroupBy Operations/14. Coding Exercise 13 (Intro).mp4
12.4 MB
11. Cleaning Data/14. Coding Exercise 11 (Intro).mp4
11.4 MB
20. Time Series Advanced Financial Time Series/13. Coding Exercise 17 (Intro).mp4
11.3 MB
5. DataFrame Basics II/14. Coding Exercise 5 (Intro).mp4
11.3 MB
13. GroupBy Operations/1. Intro.mp4
10.6 MB
7. DataFrame Basics III/7. Coding Exercise 7 (Intro).mp4
10.5 MB
8. Visualization with Matplotlib/8. Coding Exercise 9 (Intro).mp4
10.1 MB
4. Pandas Series and Index Objects/23. Coding Exercise 4 (Intro).mp4
9.4 MB
16. Advanced Visualization with Seaborn/6. Coding Exercise 16 (Intro).mp4
9.4 MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/8. Coding Exercise 6 (Intro).mp4
9.2 MB
3. Pandas Basics (DataFrame Basics I)/21. Coding Exercise 2 (Intro).mp4
9.0 MB
12. Merging, Joining, and Concatenating Data/16. Coding Exercise 12 (Intro).mp4
9.0 MB
7. DataFrame Basics III/14. Coding Exercise 8 (Intro).mp4
8.6 MB
14. Reshaping and Pivoting DataFrames/8. Coding Exercsie 14 (Intro).mp4
7.1 MB
22. Python Basics/1. Intro.mp4
6.2 MB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/1. Olympic Medal Tables (Intro).mp4
4.7 MB
3. Pandas Basics (DataFrame Basics I)/5.1 Video_Lecture_NBs.zip.zip
3.6 MB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/4. Olympic Medal Tables (Solution Part 2).vtt
20.4 kB
14. Reshaping and Pivoting DataFrames/6. pd.crosstab().vtt
19.1 kB
22. Python Basics/7. Data Types Lists (Part 2).vtt
18.5 kB
3. Pandas Basics (DataFrame Basics I)/5. Coding Exercise 0 Coding the Video Lectures.vtt
16.7 kB
11. Cleaning Data/6. Removing missing values.vtt
16.5 kB
19. Time Series Basics/5. Creating a customized DatetimeIndex with pd.date_range().vtt
16.1 kB
11. Cleaning Data/5. Detection of missing Values.vtt
15.5 kB
16. Advanced Visualization with Seaborn/3. Categorical Plots.vtt
15.2 kB
1. Getting Started/7. How to use Jupyter Notebooks.vtt
15.2 kB
22. Python Basics/18. Visualization with Matplotlib.vtt
14.8 kB
13. GroupBy Operations/12. stack() and unstack().vtt
14.8 kB
7. DataFrame Basics III/9. User-defined Functions with apply(), map() and applymap().vtt
14.8 kB
12. Merging, Joining, and Concatenating Data/13. Joining on different Column Names Indexes.vtt
14.7 kB
19. Time Series Basics/7. Downsampling Time Series with resample() (Part 1).vtt
14.7 kB
23. The Numpy Package/13. Numpy Quiz Solution.vtt
14.7 kB
15. Data Preparation and Feature Creation/8. Discretization and Binning with pd.qcut().vtt
14.5 kB
12. Merging, Joining, and Concatenating Data/6. Outer Joins with merge().vtt
14.1 kB
14. Reshaping and Pivoting DataFrames/5. pivot_table().vtt
14.1 kB
12. Merging, Joining, and Concatenating Data/2. Adding Rows with append() and pd.concat() (Part 1).vtt
14.0 kB
11. Cleaning Data/10. Handling Removing Duplicates.vtt
13.9 kB
22. Python Basics/11. Conditional Statements (if, elif, else, while).vtt
13.7 kB
13. GroupBy Operations/15. Coding Exercise 13 (Solution).vtt
13.6 kB
11. Cleaning Data/9. Detection of Duplicates.vtt
13.5 kB
4. Pandas Series and Index Objects/3. Analyzing Numerical Series with unique(), nunique() and value_counts().vtt
13.2 kB
11. Cleaning Data/2. String Operations.vtt
13.2 kB
15. Data Preparation and Feature Creation/2. Arithmetic Operations (Part 1).vtt
13.2 kB
7. DataFrame Basics III/11. Hierarchical Indexing (Part 2).vtt
13.1 kB
15. Data Preparation and Feature Creation/3. Arithmetic Operations (Part 2).vtt
12.9 kB
10. Importing Data/4. NEW Importing Data from Excel with pd.read_excel().vtt
12.9 kB
23. The Numpy Package/11. Visualization and (Linear) Regression.vtt
12.9 kB
13. GroupBy Operations/5. split-apply-combine applied.vtt
12.8 kB
22. Python Basics/20. Python Basics Quiz Solution.vtt
12.7 kB
15. Data Preparation and Feature Creation/6. Discretization and Binning with pd.cut() (Part 1).vtt
12.5 kB
16. Advanced Visualization with Seaborn/4. Joint Plots Regression Plots.vtt
12.5 kB
8. Visualization with Matplotlib/3. Customization of Plots.vtt
12.4 kB
11. Cleaning Data/1. First Inspection & Handling of inconsistent Data.vtt
11.8 kB
14. Reshaping and Pivoting DataFrames/2. Transposing Rows and Columns.vtt
11.7 kB
7. DataFrame Basics III/10. Hierarchical Indexing (Part 1).vtt
11.4 kB
5. DataFrame Basics II/2. Filtering DataFrames by one Condition.vtt
11.4 kB
14. Reshaping and Pivoting DataFrames/4. Limits of pivot().vtt
11.2 kB
3. Pandas Basics (DataFrame Basics I)/17. Slicing Rows and Columns with loc (label-based indexing).vtt
11.1 kB
10. Importing Data/3. OLD Importing Data from Excel with pd.read_excel().vtt
10.8 kB
7. DataFrame Basics III/13. String Operations (Part 2).vtt
10.7 kB
1. Getting Started/1. Overview Student FAQ.vtt
10.7 kB
20. Time Series Advanced Financial Time Series/12. Filling NA Values with bfill, ffill and interpolation.vtt
10.7 kB
4. Pandas Series and Index Objects/19. Changing Row Index with set_index() and reset_index().vtt
10.6 kB
13. GroupBy Operations/4. split-apply-combine explained.vtt
10.6 kB
7. DataFrame Basics III/5. Summary Statistics and Accumulations.vtt
10.5 kB
3. Pandas Basics (DataFrame Basics I)/19. Summary and Outlook.vtt
10.4 kB
14. Reshaping and Pivoting DataFrames/3. Pivoting DataFrames with pivot().vtt
10.4 kB
4. Pandas Series and Index Objects/9. Indexing and Slicing Pandas Series.vtt
10.3 kB
12. Merging, Joining, and Concatenating Data/3. Adding Rows with pd.concat() (Part 2).vtt
10.2 kB
23. The Numpy Package/5. Numpy Arrays Indexing and Slicing of multi-dimensional Arrays.vtt
10.2 kB
22. Python Basics/12. For Loops.vtt
10.2 kB
22. Python Basics/5. Data Types Strings.vtt
10.1 kB
19. Time Series Basics/2. Converting strings to datetime objects with pd.to_datetime().vtt
9.9 kB
3. Pandas Basics (DataFrame Basics I)/9. Explore your own Dataset Coding Exercise 1 (Intro).vtt
9.9 kB
15. Data Preparation and Feature Creation/11. Creating Dummy Variables.vtt
9.9 kB
22. Python Basics/10. Operators & Booleans.vtt
9.9 kB
1. Getting Started/6. Opening a Jupyter Notebook.vtt
9.8 kB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/2. Best Practice (How you should do it).vtt
9.7 kB
8. Visualization with Matplotlib/2. The plot() method.vtt
9.7 kB
10. Importing Data/2. Importing messy csv-files with pd.read_csv.vtt
9.7 kB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/3. Chained Indexing How you should NOT do it (Part 1).vtt
9.7 kB
7. DataFrame Basics III/2. Sorting DataFrames with sort_index() and sort_values().vtt
9.7 kB
14. Reshaping and Pivoting DataFrames/7. melting DataFrames with melt().vtt
9.7 kB
7. DataFrame Basics III/15. Coding Exercise 8 (Solution).vtt
9.6 kB
20. Time Series Advanced Financial Time Series/8. Measuring Stock Performance with MEAN Returns and STD of Returns.vtt
9.6 kB
4. Pandas Series and Index Objects/10. Sorting of Series and Introduction to the inplace - parameter.vtt
9.5 kB
11. Cleaning Data/4. Intro NA values missing values.vtt
9.5 kB
5. DataFrame Basics II/15. Coding Exercise 5 (Solution).vtt
9.5 kB
22. Python Basics/15. User Defined Functions (Part 1).vtt
9.4 kB
11. Cleaning Data/11. Detection of Outliers.vtt
9.4 kB
16. Advanced Visualization with Seaborn/5. Matrixplots Heatmaps.vtt
9.3 kB
19. Time Series Basics/10. Advanced Indexing with reindex().vtt
9.2 kB
19. Time Series Basics/8. Downsampling Time Series with resample (Part 2).vtt
9.0 kB
20. Time Series Advanced Financial Time Series/3. NEW Importing Stock Price Data from Yahoo Finance (it still works!).vtt
9.0 kB
20. Time Series Advanced Financial Time Series/9. Financial Time Series - Return and Risk.vtt
9.0 kB
23. The Numpy Package/7. Generating Random Numbers.vtt
9.0 kB
22. Python Basics/2. First Steps.vtt
9.0 kB
13. GroupBy Operations/10. Generalizing split-apply-combine with apply().vtt
9.0 kB
3. Pandas Basics (DataFrame Basics I)/6. Built-in Functions, Attributes and Methods with Pandas.vtt
8.9 kB
23. The Numpy Package/2. Numpy Arrays Vectorization.vtt
8.9 kB
3. Pandas Basics (DataFrame Basics I)/4. First Steps (Inspection of Data, Part 2).vtt
8.9 kB
13. GroupBy Operations/2. Understanding the GroupBy Object.vtt
8.8 kB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/6. Simple Rules what to do when....vtt
8.8 kB
15. Data Preparation and Feature Creation/10. Scaling Standardization.vtt
8.8 kB
22. Python Basics/6. Data Types Lists (Part 1).vtt
8.7 kB
19. Time Series Basics/1. Importing Time Series Data from csv-files.vtt
8.7 kB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/2. Olympic Medal Tables (Instruction & Hints).vtt
8.5 kB
4. Pandas Series and Index Objects/13. Manipulating Pandas Series.vtt
8.4 kB
12. Merging, Joining, and Concatenating Data/14. Joining on more than one Column.vtt
8.4 kB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/4. Chained Indexing How you should NOT do it (Part 2).vtt
8.4 kB
11. Cleaning Data/13. Categorical Data.vtt
8.2 kB
7. DataFrame Basics III/12. String Operations (Part 1).vtt
8.2 kB
12. Merging, Joining, and Concatenating Data/4. Arithmetic with Pandas Objects Data Alignment.vtt
8.2 kB
5. DataFrame Basics II/5. Advanced Filtering with between(), isin() and ~.vtt
8.1 kB
10. Importing Data/6. Importing Data from the Web with pd.read_html().vtt
8.0 kB
3. Pandas Basics (DataFrame Basics I)/11. Selecting Columns.vtt
8.0 kB
7. DataFrame Basics III/3. Ranking DataFrames with rank().vtt
8.0 kB
15. Data Preparation and Feature Creation/9. Floors and Caps.vtt
8.0 kB
23. The Numpy Package/1. Introduction to Numpy Arrays.vtt
8.0 kB
10. Importing Data/5. Importing messy Data from Excel with pd.read_excel().vtt
8.0 kB
1. Getting Started/5. Installation of Anaconda.vtt
8.0 kB
22. Python Basics/17. User Defined Functions (Part 3).vtt
7.9 kB
13. GroupBy Operations/9. Replacing NA Values by group-specific Values.vtt
7.8 kB
22. Python Basics/4. Data Types Integers and Floats.vtt
7.8 kB
23. The Numpy Package/9. Case Study Numpy vs. Python Standard Library.vtt
7.7 kB
4. Pandas Series and Index Objects/6. Analyzing non-numerical Series with unique(), nunique(), value_counts().vtt
7.7 kB
20. Time Series Advanced Financial Time Series/6. The shift() method.vtt
7.7 kB
19. Time Series Basics/4. Indexing and Slicing Time Series.vtt
7.6 kB
23. The Numpy Package/10. Summary Statistics.vtt
7.6 kB
3. Pandas Basics (DataFrame Basics I)/13. Selecting Rows with iloc (position-based indexing).vtt
7.6 kB
20. Time Series Advanced Financial Time Series/7. The methods diff() and pct_change().vtt
7.6 kB
15. Data Preparation and Feature Creation/5. Conditional Transformation.vtt
7.6 kB
5. DataFrame Basics II/8. Removing Rows.vtt
7.4 kB
23. The Numpy Package/3. Numpy Arrays Indexing and Slicing.vtt
7.3 kB
8. Visualization with Matplotlib/7. Scatterplots.vtt
7.3 kB
13. GroupBy Operations/3. Splitting with many Keys.vtt
7.3 kB
22. Python Basics/3. Variables.vtt
7.3 kB
11. Cleaning Data/3. Changing Datatype of Columns with astype().vtt
7.3 kB
5. DataFrame Basics II/10. Creating Columns based on other Columns.vtt
7.2 kB
4. Pandas Series and Index Objects/2. First Steps with Pandas Series.vtt
7.2 kB
15. Data Preparation and Feature Creation/4. TransformationMapping with map().vtt
7.2 kB
8. Visualization with Matplotlib/5. Histograms (Part 2).vtt
7.2 kB
22. Python Basics/14. Generating Random Numbers.vtt
7.0 kB
20. Time Series Advanced Financial Time Series/5. Normalizing Time Series to a Base Value (100).vtt
6.9 kB
22. Python Basics/16. User Defined Functions (Part 2).vtt
6.9 kB
22. Python Basics/8. Data Types Tuples.vtt
6.9 kB
13. GroupBy Operations/11. Hierarchical Indexing with Groupby.vtt
6.8 kB
4. Pandas Series and Index Objects/16. Coding Exercise 3 (Solution).vtt
6.8 kB
13. GroupBy Operations/8. Transformation with transform().vtt
6.7 kB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/9. Coding Exercise 6 (Solution).vtt
6.5 kB
3. Pandas Basics (DataFrame Basics I)/22. Coding Exercise 2 (Solution).vtt
6.5 kB
22. Python Basics/13. Key words break, pass, continue.vtt
6.5 kB
4. Pandas Series and Index Objects/7. Creating Pandas Series (Part 1).vtt
6.5 kB
20. Time Series Advanced Financial Time Series/11. Helpful DatetimeIndex Attributes and Methods.vtt
6.4 kB
4. Pandas Series and Index Objects/5. EXCURSUS Updating Pandas Anaconda.vtt
6.4 kB
19. Time Series Basics/9. The PeriodIndex object.vtt
6.4 kB
16. Advanced Visualization with Seaborn/2. First Steps in Seaborn.vtt
6.3 kB
23. The Numpy Package/6. Numpy Arrays Boolean Indexing.vtt
6.3 kB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/5. View vs. Copy.vtt
6.3 kB
13. GroupBy Operations/7. Advanced aggregation with agg().vtt
6.2 kB
12. Merging, Joining, and Concatenating Data/15. pd.merge() and join().vtt
6.2 kB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/5. Olympic Medal Tables (Solution Part 3).vtt
6.2 kB
23. The Numpy Package/4. Numpy Arrays Shape and Dimensions.vtt
6.2 kB
23. The Numpy Package/8. Performance Issues.vtt
6.2 kB
11. Cleaning Data/12. Handling Removing Outliers.vtt
6.2 kB
19. Time Series Basics/3. Initial Analysis Visualization of Time Series.vtt
6.1 kB
3. Pandas Basics (DataFrame Basics I)/3. First Steps (Inspection of Data, Part 1).vtt
6.0 kB
4. Pandas Series and Index Objects/17. First Steps with Pandas Index Objects.vtt
6.0 kB
1. Getting Started/2. Tips How to get the most out of this course.vtt
6.0 kB
4. Pandas Series and Index Objects/8. Creating Pandas Series (Part 2).vtt
5.9 kB
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/3. Olympic Medal Tables (Solution Part 1).vtt
5.9 kB
3. Pandas Basics (DataFrame Basics I)/16. Selecting Rows with loc (label-based indexing).vtt
5.7 kB
11. Cleaning Data/8. Intro Duplicates.vtt
5.7 kB
7. DataFrame Basics III/4. nunique() and nlargest() nsmallest() with DataFrames.vtt
5.7 kB
1. Getting Started/4. More FAQ Important Information.html
5.6 kB
15. Data Preparation and Feature Creation/7. Discretization and Binning with pd.cut() (Part 2).vtt
5.5 kB
4. Pandas Series and Index Objects/12. idxmin() and idxmax().vtt
5.5 kB
3. Pandas Basics (DataFrame Basics I)/14. Slicing Rows and Columns with iloc (position-based indexing).vtt
5.5 kB
5. DataFrame Basics II/7. Removing Columns.vtt
5.5 kB
3. Pandas Basics (DataFrame Basics I)/1. Intro to Tabular Data Pandas.vtt
5.5 kB
20. Time Series Advanced Financial Time Series/4. Initial Inspection and Visualization.vtt
5.5 kB
7. DataFrame Basics III/8. Coding Exercise 7 (Solution).vtt
5.4 kB
5. DataFrame Basics II/4. Filtering DataFrames by many Conditions (OR).vtt
5.2 kB
8. Visualization with Matplotlib/9. Coding Exercise 9 (Solution).vtt
5.1 kB
20. Time Series Advanced Financial Time Series/10. Financial Time Series - Covariance and Correlation.vtt
5.0 kB
12. Merging, Joining, and Concatenating Data/8. Outer Joins (without Intersection) with merge().vtt
4.9 kB
15. Data Preparation and Feature Creation/12. String Operations.vtt
4.9 kB
4. Pandas Series and Index Objects/21. Renaming Index & Column Labels with rename().vtt
4.8 kB
8. Visualization with Matplotlib/4. Histograms (Part 1).vtt
4.8 kB
12. Merging, Joining, and Concatenating Data/11. Left Joins with merge().vtt
4.7 kB
1. Getting Started/3. Did you know that....vtt
4.7 kB
11. Cleaning Data/7. Replacing missing values.vtt
4.7 kB
5. DataFrame Basics II/3. Filtering DataFrames by many Conditions (AND).vtt
4.7 kB
3. Pandas Basics (DataFrame Basics I)/10. Explore your own Dataset Coding Exercise 1 (Solution).vtt
4.6 kB
4. Pandas Series and Index Objects/24. Coding Exercise 4 (Solution).vtt
4.2 kB
5. DataFrame Basics II/6. any() and all().vtt
4.2 kB
12. Merging, Joining, and Concatenating Data/12. Right Joins with merge().vtt
4.1 kB
8. Visualization with Matplotlib/6. Barcharts and Piecharts.vtt
4.1 kB
3. Pandas Basics (DataFrame Basics I)/12. Selecting Rows with Square Brackets (not advisable).vtt
4.1 kB
7. DataFrame Basics III/6. The agg() method.vtt
3.8 kB
4. Pandas Series and Index Objects/11. nlargest() and nsmallest().vtt
3.8 kB
22. Python Basics/9. Data Types Sets.vtt
3.7 kB
4. Pandas Series and Index Objects/20. Changing Column Labels.vtt
3.5 kB
5. DataFrame Basics II/9. Adding new Columns to a DataFrame.vtt
3.5 kB
12. Merging, Joining, and Concatenating Data/9. Left Joins (without Intersection) with merge().vtt
3.5 kB
19. Time Series Basics/6. More on pd.date_range().vtt
3.2 kB
5. DataFrame Basics II/11. Adding Columns with insert().vtt
3.2 kB
4. Pandas Series and Index Objects/18. Creating Index Objects from Scratch.vtt
3.2 kB
12. Merging, Joining, and Concatenating Data/7. Inner Joins with merge().vtt
3.0 kB
15. Data Preparation and Feature Creation/13. Coding Exercise 15 (Intro).vtt
2.7 kB
12. Merging, Joining, and Concatenating Data/5. EXCURSUS Comparing two DataFrames Identify Differences.html
2.7 kB
22. Python Basics/1. Intro.vtt
2.6 kB
10. Importing Data/7. Coding Exercise 10 (Intro).vtt
2.6 kB
20. Time Series Advanced Financial Time Series/2. NEW Getting Ready (Installing required package).vtt
2.5 kB
13. GroupBy Operations/1. Intro.vtt
2.4 kB
12. Merging, Joining, and Concatenating Data/10. Right Joins (without Intersection) with merge().vtt
2.3 kB
4. Pandas Series and Index Objects/15. Coding Exercise 3 (Intro).vtt
2.3 kB
13. GroupBy Operations/14. Coding Exercise 13 (Intro).vtt
2.2 kB
11. Cleaning Data/14. Coding Exercise 11 (Intro).vtt
2.2 kB
20. Time Series Advanced Financial Time Series/13. Coding Exercise 17 (Intro).vtt
2.1 kB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/8. Coding Exercise 6 (Intro).vtt
1.7 kB
5. DataFrame Basics II/14. Coding Exercise 5 (Intro).vtt
1.5 kB
4. Pandas Series and Index Objects/23. Coding Exercise 4 (Intro).vtt
1.5 kB
8. Visualization with Matplotlib/8. Coding Exercise 9 (Intro).vtt
1.5 kB
24. Bonus/1. Bonus.html
1.5 kB
3. Pandas Basics (DataFrame Basics I)/21. Coding Exercise 2 (Intro).vtt
1.4 kB
7. DataFrame Basics III/7. Coding Exercise 7 (Intro).vtt
1.3 kB
12. Merging, Joining, and Concatenating Data/16. Coding Exercise 12 (Intro).vtt
1.3 kB
5. DataFrame Basics II/12. Adding new Rows (hands-on approach).html
1.2 kB
7. DataFrame Basics III/14. Coding Exercise 8 (Intro).vtt
1.1 kB
16. Advanced Visualization with Seaborn/6. Coding Exercise 16 (Intro).vtt
1.1 kB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/1. Intro.html
1.0 kB
20. Time Series Advanced Financial Time Series/1. Intro.html
976 Bytes
14. Reshaping and Pivoting DataFrames/8. Coding Exercsie 14 (Intro).vtt
968 Bytes
14. Reshaping and Pivoting DataFrames/1. Intro.html
894 Bytes
4. Pandas Series and Index Objects/1. Intro.html
838 Bytes
9. -----PART II FULL DATA WORKFLOW A-Z------/1. Welcome to PART II Full Data Analysis Workflow.html
818 Bytes
16. Advanced Visualization with Seaborn/1. Intro.html
775 Bytes
17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/1. Olympic Medal Tables (Intro).vtt
748 Bytes
3. Pandas Basics (DataFrame Basics I)/18. Label-based Indexing Cheat Sheets.html
711 Bytes
15. Data Preparation and Feature Creation/1. Intro.html
710 Bytes
3. Pandas Basics (DataFrame Basics I)/15. Position-based Indexing Cheat Sheets.html
700 Bytes
8. Visualization with Matplotlib/1. Intro.html
680 Bytes
18. --------PART IV MANAGING TIME SERIES DATA WITH PANDAS----------/1. Welcome to Part III Time Series Data.html
660 Bytes
7. DataFrame Basics III/1. Intro.html
643 Bytes
2. --------PART I BUILDING BLOCKS--------/1. Welcome to PART I - Pandas Building Blocks.html
606 Bytes
12. Merging, Joining, and Concatenating Data/1. Intro.html
585 Bytes
21. ------APPENDIX PYTHON BASICS AND NUMPY--------/1. Welcome to the Appendix.html
429 Bytes
3. Pandas Basics (DataFrame Basics I)/2. Tabular Data Cheat Sheets.html
421 Bytes
10. Importing Data/8. Coding Exercise 10 (Solution).html
406 Bytes
5. DataFrame Basics II/1. Intro.html
406 Bytes
11. Cleaning Data/15. Coding Exercise 11 (Solution).html
398 Bytes
12. Merging, Joining, and Concatenating Data/17. Coding Exercise 12 (Solution).html
398 Bytes
14. Reshaping and Pivoting DataFrames/9. Coding Exercise 14 (Solution).html
398 Bytes
15. Data Preparation and Feature Creation/14. Coding Exercise 15 (Solution).html
398 Bytes
16. Advanced Visualization with Seaborn/7. Coding Exercise 16 (Solution).html
398 Bytes
20. Time Series Advanced Financial Time Series/14. Coding Exercise 17 (Solution).html
398 Bytes
4. Pandas Series and Index Objects/4. UPDATE Pandas Version 0.24.0 (Jan 2019).html
369 Bytes
3. Pandas Basics (DataFrame Basics I)/6.1 DataFrame Methods and Attributes.html
141 Bytes
3. Pandas Basics (DataFrame Basics I)/6.2 Pandas Series Methods and Attributes.html
138 Bytes
13. GroupBy Operations/13. GroupBy 2.html
123 Bytes
13. GroupBy Operations/6. GroupBy 1.html
123 Bytes
22. Python Basics/19. Python Basics.html
123 Bytes
23. The Numpy Package/12. Numpy.html
123 Bytes
3. Pandas Basics (DataFrame Basics I)/20. Indexing and Slicing.html
123 Bytes
3. Pandas Basics (DataFrame Basics I)/8. First Steps.html
123 Bytes
4. Pandas Series and Index Objects/14. Pandas Series.html
123 Bytes
4. Pandas Series and Index Objects/22. Pandas Index objects.html
123 Bytes
5. DataFrame Basics II/13. DataFrame Basics II.html
123 Bytes
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/7. Manipulating DataFrames Slices.html
123 Bytes
4. Pandas Series and Index Objects/5.1 Updating Anaconda (Link).html
119 Bytes
1. Getting Started/5.1 Installing on Windows.html
112 Bytes
1. Getting Started/5.2 Installing on macOS.html
111 Bytes
1. Getting Started/5.3 Installing on Linux.html
110 Bytes
[DesireCourse.Net].url
51 Bytes
[CourseClub.Me].url
48 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!