搜索
Packt.Step.by.Step.Machine.Learning.with.Python
磁力链接/BT种子名称
Packt.Step.by.Step.Machine.Learning.with.Python
磁力链接/BT种子简介
种子哈希:
cc6469702160d18e078735731ab059a59bdc3dd7
文件大小:
953.6M
已经下载:
6288
次
下载速度:
极快
收录时间:
2020-01-27
最近下载:
2025-10-14
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:CC6469702160D18E078735731AB059A59BDC3DD7
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
小蓝俱乐部
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
51动漫
ai色色
禁漫天堂
草榴社区
哆哔涩漫
海角乱伦社区
TikTok成人版
暗网禁区
91PORN
PornHub
抖音Max
呦乐园
搜同
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
紫蛋
卧铺
midv-871-c
mission.impossible.fallout.2018
mism-209
blake.eden
ipz-445
在校小姐姐
街射
露出
transformers dark of the moon 2011
天海2024
mui_tna
约了个06年妹子,刚出社会,身材高挑,皮肤白嫩光滑,下面脱了毛光滑干净
legalporno
yrk-254
娜娜
queensnake 2025
浪浪山小妖怪
skylar vox
偶遇
2025最新女友
lasvegasamateurs.21.08.26
全裸一字马
ipzz-445
voyager 1991
fc2-ppv-3122336
kono subarashii sekai ni shukufuku
kiittenymph
阴部
文件列表
6 - Click-Through Prediction with Logistic Regression#/Click-Through Prediction with Logistic Regression by Gradient Descent.mp4
79.0 MB
3 - Spam Email Detection with Naïve Bayes#/The Naïve Bayes Implementation.mp4
60.1 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Touring Powerful NLP Libraries in Python.mp4
42.2 MB
6 - Click-Through Prediction with Logistic Regression#/Logistic Regression Classifier.mp4
39.2 MB
3 - Spam Email Detection with Naïve Bayes#/Classifier Performance Evaluation.mp4
38.8 MB
5 - Click-Through Prediction with Tree-Based Algorithms/Decision Tree Classifier.mp4
38.5 MB
4 - News Topic Classification with Support Vector Machine/News topic Classification with Support Vector Machine.mp4
38.1 MB
7 - Stock Price Prediction with Regression Algorithms/Stock Price Prediction with Regression Algorithms.mp4
35.9 MB
8 - Best Practices/Best Practices in Data Preparation Stage.mp4
33.4 MB
7 - Stock Price Prediction with Regression Algorithms/Linear Regression.mp4
31.8 MB
7 - Stock Price Prediction with Regression Algorithms/Decision Tree Regression.mp4
28.8 MB
5 - Click-Through Prediction with Tree-Based Algorithms/Click-Through Prediction with Decision Tree.mp4
26.2 MB
7 - Stock Price Prediction with Regression Algorithms/Predicting Stock Price with Regression Algorithms.mp4
25.6 MB
5 - Click-Through Prediction with Tree-Based Algorithms/The Implementations of Decision Tree.mp4
23.9 MB
1 - Getting Started with Python and Machine Learning/Installing Software and Setting Up.mp4
23.1 MB
4 - News Topic Classification with Support Vector Machine/Fetal State Classification with SVM.mp4
22.9 MB
6 - Click-Through Prediction with Logistic Regression#/One-Hot Encoding - Converting Categorical Features to Numerical.mp4
22.5 MB
8 - Best Practices/Best Practices in the Training Sets Generation Stage.mp4
21.5 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Thinking about Features.mp4
21.3 MB
4 - News Topic Classification with Support Vector Machine/The Implementations of SVM.mp4
20.6 MB
5 - Click-Through Prediction with Tree-Based Algorithms/Random Forest - Feature Bagging of Decision Tree.mp4
19.2 MB
3 - Spam Email Detection with Naïve Bayes#/Model Tuning and cross-validation.mp4
19.1 MB
1 - Getting Started with Python and Machine Learning/The Course Overview.mp4
18.0 MB
4 - News Topic Classification with Support Vector Machine/Recap and Inverse Document Frequency.mp4
17.4 MB
6 - Click-Through Prediction with Logistic Regression#/Feature Selection via Random Forest.mp4
16.8 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Understanding NLP.mp4
16.7 MB
4 - News Topic Classification with Support Vector Machine/Choosing Between the Linear and the RBF Kernel.mp4
14.9 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Getting the Newsgroups Data.mp4
14.8 MB
8 - Best Practices/Best Practices in the Deployment and Monitoring Stage.mp4
14.6 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Topic Modeling.mp4
13.7 MB
1 - Getting Started with Python and Machine Learning/Introduction to Machine Learning.mp4
13.7 MB
7 - Stock Price Prediction with Regression Algorithms/Regression Performance Evaluation.mp4
13.3 MB
7 - Stock Price Prediction with Regression Algorithms/Data Acquisition and Feature Generation.mp4
12.9 MB
4 - News Topic Classification with Support Vector Machine/The Kernels of SVM.mp4
12.4 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Visualization.mp4
12.1 MB
5 - Click-Through Prediction with Tree-Based Algorithms/Brief Overview of Advertising Click-Through Prediction.mp4
11.5 MB
8 - Best Practices/Best Practices in the Model Training, Evaluation, and Selection Stage.mp4
11.4 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Clustering.mp4
10.9 MB
4 - News Topic Classification with Support Vector Machine/The Mechanics of SVM.mp4
9.6 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Data Preprocessing.mp4
9.6 MB
3 - Spam Email Detection with Naïve Bayes#/Getting Started with Classification.mp4
9.2 MB
7 - Stock Price Prediction with Regression Algorithms/Support Vector Regression.mp4
8.5 MB
3 - Spam Email Detection with Naïve Bayes#/The Mechanics of Naïve Bayes.mp4
7.7 MB
7 - Stock Price Prediction with Regression Algorithms/Brief Overview of the Stock Market And Stock Price.mp4
7.4 MB
3 - Spam Email Detection with Naïve Bayes#/Exploring Naïve Bayes.mp4
5.4 MB
V09050_Code/V09050_Code/Section 04/CTG.xls
1.7 MB
2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Machine Learning with Python.mp4
1.7 MB
7 - Stock Price Prediction with Regression Algorithms/Machine Learning with Python.mp4
1.7 MB
V09050_Code/V09050_Code/Section 07/198810101_20151231.csv
556.8 kB
V09050_Code/V09050_Code/Section 03/email_spam.py
10.5 kB
V09050_Code/V09050_Code/Section 05/1decision_tree_submit.py
10.0 kB
V09050_Code/V09050_Code/Section 06/3logistic_regression_from_scratch.py
7.8 kB
V09050_Code/V09050_Code/Section 07/1stock_price_prediction.py
7.7 kB
V09050_Code/V09050_Code/Section 07/3decision_tree_regression.py
7.2 kB
V09050_Code/V09050_Code/Section 03/.DS_Store
6.1 kB
V09050_Code/V09050_Code/Section 04/.DS_Store
6.1 kB
V09050_Code/V09050_Code/Section 05/.DS_Store
6.1 kB
V09050_Code/V09050_Code/Section 06/.DS_Store
6.1 kB
V09050_Code/V09050_Code/Section 07/.DS_Store
6.1 kB
V09050_Code/V09050_Code/Section 08/.DS_Store
6.1 kB
V09050_Code/V09050_Code/Section 06/5scikit_logistic_regression.py
5.4 kB
V09050_Code/V09050_Code/Section 04/2topic_categorization.py
5.2 kB
V09050_Code/V09050_Code/Section 07/2linear_regression.py
4.8 kB
V09050_Code/V09050_Code/Section 02/.ropeproject/config.py
3.5 kB
V09050_Code/V09050_Code/Section 08/1imputation.py
3.3 kB
V09050_Code/V09050_Code/Section 04/1email_spam_tfidf_submit.py
2.7 kB
V09050_Code/V09050_Code/Section 06/1one_hot_encode.py
2.5 kB
V09050_Code/V09050_Code/Section 02/.ropeproject/objectdb
2.3 kB
V09050_Code/V09050_Code/Section 05/2avazu_ctr.py
2.1 kB
V09050_Code/V09050_Code/Section 06/4random_forest_feature_selection.py
1.7 kB
V09050_Code/V09050_Code/Section 04/4ctg.py
1.2 kB
V09050_Code/V09050_Code/Section 04/3plot_rbf_kernels.py
1.2 kB
V09050_Code/V09050_Code/Section 08/2feature_selection.py
1.1 kB
V09050_Code/V09050_Code/Section 08/5save_reuse_monitor_model.py
1.0 kB
V09050_Code/V09050_Code/Section 02/.ropeproject/globalnames
1.0 kB
V09050_Code/V09050_Code/Section 02/4topic_model.py
998 Bytes
V09050_Code/V09050_Code/Section 02/3post_clustering.py
919 Bytes
V09050_Code/V09050_Code/Section 06/2logistic_function.py
833 Bytes
V09050_Code/V09050_Code/Section 02/2clean_words.py
723 Bytes
V09050_Code/V09050_Code/Section 07/20051201_20151210.csv
644 Bytes
V09050_Code/V09050_Code/Section 08/3dimensionality_reduction.py
635 Bytes
V09050_Code/V09050_Code/Section 02/1histogram.py
529 Bytes
V09050_Code/V09050_Code/Section 07/4support_vector_regression.py
439 Bytes
V09050_Code/V09050_Code/Section 08/4generic_feature_engineering.py
344 Bytes
V09050_Code/V09050_Code/Section 02/0_getting.py
303 Bytes
V09050_Code/V09050_Code/Section 02/.ropeproject/history
14 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!