磁力链接

magnet:?xt=urn:btih:BE478E7E364ED7F705B50E1E0594437E1C10C665
推荐使用PIKPAK网盘下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看

资源截图

API Integration

文件列表

  • ~Get Your Files Here !/012. Chapter 2. Parallel processing.mp4 60.2 MB
  • ~Get Your Files Here !/054. Chapter 9. Tennis rankings with Elo and PageRank in PySpark.mp4 53.6 MB
  • ~Get Your Files Here !/037. Chapter 6. Solving the parallel map and reduce paradox.mp4 51.4 MB
  • ~Get Your Files Here !/067. Chapter 12. Machine learning in the cloud with Spark on EMR.mp4 49.5 MB
  • ~Get Your Files Here !/018. Chapter 3. Twitter demographic projections.mp4 48.2 MB
  • ~Get Your Files Here !/063. Chapter 11. Storing data in the cloud with S3.mp4 42.9 MB
  • ~Get Your Files Here !/058. Chapter 10. Machine learning basics with decision tree classifiers.mp4 42.7 MB
  • ~Get Your Files Here !/013. Chapter 2. Putting it all together Scraping a Wikipedia network.mp4 35.4 MB
  • ~Get Your Files Here !/066. Chapter 12. MapReduce in the cloud with Amazon s Elastic MapReduce.mp4 34.8 MB
  • ~Get Your Files Here !/053. Chapter 9. PageRank with map and reduce in PySpark.mp4 34.2 MB
  • ~Get Your Files Here !/024. Chapter 4. The poetry puzzle Lazily processing a large dataset.mp4 31.3 MB
  • ~Get Your Files Here !/011. Chapter 2. Accelerating large dataset work Map and parallel computing.mp4 30.3 MB
  • ~Get Your Files Here !/048. Chapter 8. Tennis analytics with Hadoop.mp4 29.7 MB
  • ~Get Your Files Here !/017. Chapter 3. Unmasking hacker communications.mp4 29.2 MB
  • ~Get Your Files Here !/025. Chapter 4. Lazy simulations Simulating fishing villages.mp4 28.5 MB
  • ~Get Your Files Here !/036. Chapter 6. Speeding up map and reduce with advanced parallelization.mp4 27.3 MB
  • ~Get Your Files Here !/057. Chapter 10. Faster decision-making with machine learning and PySpark.mp4 27.2 MB
  • ~Get Your Files Here !/029. Chapter 5. The three parts of reduce.mp4 26.3 MB
  • ~Get Your Files Here !/049. Chapter 8. mrjob for Pythonic Hadoop streaming.mp4 26.2 MB
  • ~Get Your Files Here !/050. Chapter 8. Tennis match analysis with mrjob.mp4 25.9 MB
  • ~Get Your Files Here !/062. Chapter 11. Large datasets in the cloud with Amazon Web Services and S3.mp4 24.4 MB
  • ~Get Your Files Here !/032. Chapter 5. Analyzing car trends with reduce.mp4 23.2 MB
  • ~Get Your Files Here !/044. Chapter 7. Document word scores in Spark.mp4 20.8 MB
  • ~Get Your Files Here !/043. Chapter 7. Spark for interactive workflows.mp4 19.5 MB
  • ~Get Your Files Here !/023. Chapter 4. Understanding iterators The magic behind lazy Python.mp4 19.4 MB
  • ~Get Your Files Here !/004. Chapter 1. What is parallel computing.mp4 16.3 MB
  • ~Get Your Files Here !/059. Chapter 10. Fast random forest classifications in PySpark.mp4 16.2 MB
  • ~Get Your Files Here !/005. Chapter 1. The map and reduce style.mp4 15.3 MB
  • ~Get Your Files Here !/042. Chapter 7. Using Hadoop to find high-scoring words.mp4 15.2 MB
  • ~Get Your Files Here !/041. Chapter 7. Hadoop for batch processing.mp4 14.1 MB
  • ~Get Your Files Here !/022. Chapter 4. Some lazy functions to know.mp4 13.2 MB
  • ~Get Your Files Here !/031. Chapter 5. Using map and reduce together.mp4 13.0 MB
  • ~Get Your Files Here !/040. Chapter 7. Processing truly big datasets with Hadoop and Spark.mp4 12.4 MB
  • ~Get Your Files Here !/016. Chapter 3. Function pipelines for mapping complex transformations.mp4 11.4 MB
  • ~Get Your Files Here !/030. Chapter 5. Reductions you re familiar with.mp4 10.8 MB
  • ~Get Your Files Here !/047. Chapter 8. Best practices for large data with Apache Streaming and mrjob.mp4 10.4 MB
  • ~Get Your Files Here !/003. Chapter 1. Why large datasets.mp4 7.8 MB
  • ~Get Your Files Here !/002. Chapter 1. Introduction.mp4 7.7 MB
  • ~Get Your Files Here !/006. Chapter 1. Distributed computing for speed and scale.mp4 7.0 MB
  • ~Get Your Files Here !/014. Chapter 2. Exercises.mp4 7.0 MB
  • ~Get Your Files Here !/028. Chapter 5. Accumulation operations with reduce.mp4 6.9 MB
  • ~Get Your Files Here !/021. Chapter 4. Processing large datasets with lazy workflows.mp4 6.7 MB
  • ~Get Your Files Here !/007. Chapter 1. Hadoop A distributed framework for map and reduce.mp4 6.5 MB
  • ~Get Your Files Here !/026. Chapter 4. Exercises.mp4 6.5 MB
  • ~Get Your Files Here !/019. Chapter 3. Exercises.mp4 5.1 MB
  • ~Get Your Files Here !/055. Chapter 9. Exercises.mp4 5.0 MB
  • ~Get Your Files Here !/027. Chapter 4. Summary.mp4 4.3 MB
  • ~Get Your Files Here !/033. Chapter 5. Speeding up map and reduce.mp4 4.2 MB
  • ~Get Your Files Here !/034. Chapter 5. Exercises.mp4 3.9 MB
  • ~Get Your Files Here !/045. Chapter 7. Exercises.mp4 3.7 MB
  • ~Get Your Files Here !/069. Chapter 12. Summary.mp4 3.6 MB
  • ~Get Your Files Here !/009. Chapter 1. AWS Elastic MapReduce Large datasets in the cloud.mp4 3.5 MB
  • ~Get Your Files Here !/065. Chapter 11. Summary.mp4 3.4 MB
  • ~Get Your Files Here !/052. Chapter 8. Summary.mp4 3.3 MB
  • ~Get Your Files Here !/056. Chapter 9. Summary.mp4 3.2 MB
  • ~Get Your Files Here !/038. Chapter 6. Summary.mp4 3.2 MB
  • ~Get Your Files Here !/008. Chapter 1. Spark for high-powered map, reduce, and more.mp4 3.2 MB
  • ~Get Your Files Here !/010. Chapter 1. Summary.mp4 3.2 MB
  • ~Get Your Files Here !/035. Chapter 5. Summary.mp4 3.2 MB
  • ~Get Your Files Here !/060. Chapter 10. Summary.mp4 3.1 MB
  • ~Get Your Files Here !/015. Chapter 2. Summary.mp4 2.9 MB
  • ~Get Your Files Here !/051. Chapter 8. Exercises.mp4 2.9 MB
  • ~Get Your Files Here !/020. Chapter 3. Summary.mp4 2.8 MB
  • ~Get Your Files Here !/046. Chapter 7. Summary.mp4 2.8 MB
  • ~Get Your Files Here !/068. Chapter 12. Exercises.mp4 2.6 MB
  • ~Get Your Files Here !/064. Chapter 11. Exercises.mp4 2.6 MB
  • ~Get Your Files Here !/061. Part 3.mp4 2.2 MB
  • ~Get Your Files Here !/039. Part 2.mp4 2.1 MB
  • ~Get Your Files Here !/001. Part 1.mp4 1.6 MB
  • ~Get Your Files Here !/Bonus Resources.txt 386 Bytes
  • Get Bonus Downloads Here.url 183 Bytes

温馨提示

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!