搜索
Udemy - Data Mining for Business Analytics & Data Analysis in Python (3.2025)
磁力链接/BT种子名称
Udemy - Data Mining for Business Analytics & Data Analysis in Python (3.2025)
磁力链接/BT种子简介
种子哈希:
b6865e5232f1388346b7273668bac29f6cbee612
文件大小:
2.1G
已经下载:
117
次
下载速度:
极快
收录时间:
2025-07-30
最近下载:
2025-10-10
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:B6865E5232F1388346B7273668BAC29F6CBEE612
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
bbcpie
ppv-3987318
身体检查
10月新档
hmn-684
妃妃宝贝
rct 515
糖心 白丝 萝莉
4773346
[主播实录
無修正 mild
cd呆呆
weagogo门事件
猪猪帮你沉浸式打飞机
rich
龙凤胎
[個人撮影]
|麻豆傳媒映畫|
fc2-ppv-3113343
4k袜
club-878
asaisharkyx
mnse-062
核弹
sone 524
midv-226
91校长出品精品第三季
完全堕落被
小母猪
白丝无毛
文件列表
06. Dimension Reduction/17. Python - Challenge Solutions.mp4
92.8 MB
04. CHAID/16. Python - Data Visualization with CHAID Model.mp4
83.5 MB
10. XGBoost and SHAP/24. Python - Challenge Solutions.mp4
68.0 MB
07. Association Rule Learning/12. Python - Challenge Solutions.mp4
62.0 MB
09. LIME - Explainable Artificial Intelligence/3. Python - Preparing LIME.mp4
57.4 MB
04. CHAID/18. Python - Challenge solutions.mp4
54.2 MB
09. LIME - Explainable Artificial Intelligence/6. Python - Challenge Solutions.mp4
53.2 MB
02. Survival Analysis/1. Game Plan for Survival Analysis section.mp4
51.9 MB
04. CHAID/17. Extra Resources and Challenge.mp4
48.8 MB
03. Cox Proportional Hazard Regression/4. Python - Preparing Script and Data.mp4
48.3 MB
02. Survival Analysis/20. Python - Survival Analysis Challenge Solutions.mp4
39.2 MB
03. Cox Proportional Hazard Regression/8. Python - Solution Challenges.mp4
39.1 MB
06. Dimension Reduction/12. Python - PCA interpretation.mp4
38.8 MB
08. Random Forest and Feature Selection/14. Python - Challenge Solutions.mp4
35.0 MB
08. Random Forest and Feature Selection/13. Extra Resources and Challenge.mp4
34.3 MB
03. Cox Proportional Hazard Regression/5. Python - Cox Proportional Hazard.mp4
33.0 MB
02. Survival Analysis/11. Python - Calculating Specific Events.mp4
32.3 MB
05. Cluster Analysis - Gaussian Mixture Model/7. Python - Optimal Clusters.mp4
31.9 MB
05. Cluster Analysis - Gaussian Mixture Model/11. Python - Cluster Interpretation.mp4
30.2 MB
07. Association Rule Learning/6. Python - Create Transaction List.mp4
29.7 MB
01. Introduction/4. Diogo's Introduction and Background.mp4
29.4 MB
07. Association Rule Learning/10. Python - Apriori Visualization.mp4
29.3 MB
05. Cluster Analysis - Gaussian Mixture Model/13. Python - Challenge solutions.mp4
29.2 MB
10. XGBoost and SHAP/20. Python - Local Interpretability.mp4
28.4 MB
03. Cox Proportional Hazard Regression/7. Extra Resources and Challenge.mp4
26.9 MB
04. CHAID/15. Python - CHAID Model.mp4
26.8 MB
01. Introduction/1. Introduction to Data Mining course for Business Analytics & Data Analysis.mp4
24.9 MB
09. LIME - Explainable Artificial Intelligence/5. Extra Resources and Challenge.mp4
24.2 MB
07. Association Rule Learning/7. Python - Encoding Transactions.mp4
23.8 MB
05. Cluster Analysis - Gaussian Mixture Model/12. Extra Resources and Challenge.mp4
22.9 MB
02. Survival Analysis/19. Extra Resources and Survival Analysis Challenge.mp4
22.9 MB
08. Random Forest and Feature Selection/7. Python - Training and Test Set.mp4
21.4 MB
05. Cluster Analysis - Gaussian Mixture Model/10. Python - Probability of belonging to each cluster.mp4
21.3 MB
06. Dimension Reduction/16. Extra Resources and Challenge.mp4
21.1 MB
07. Association Rule Learning/11. Extra Resources and Challenge.mp4
20.3 MB
07. Association Rule Learning/9. Python - Association Rule Learning.mp4
19.7 MB
05. Cluster Analysis - Gaussian Mixture Model/9. Python - Cluster Prediction.mp4
19.5 MB
08. Random Forest and Feature Selection/11. Python - Classification Report.mp4
18.9 MB
06. Dimension Reduction/15. Python -Visualizing Manifold Learning.mp4
17.3 MB
10. XGBoost and SHAP/23. Extra Resources and Challenge.mp4
17.3 MB
04. CHAID/5. Python - Importing Libraries and Data.mp4
16.8 MB
06. Dimension Reduction/13. Manifold Learning and t-SNE.mp4
16.7 MB
02. Survival Analysis/2. Survival Analyisis Introduction.mp4
16.3 MB
10. XGBoost and SHAP/4. Python - Loading Data.mp4
16.1 MB
04. CHAID/10. Python - Transforming Jobs Variable.mp4
15.9 MB
09. LIME - Explainable Artificial Intelligence/4. Python - Explaining Predictions.mp4
15.7 MB
04. CHAID/12. Python - Transform Minimum Variable.mp4
15.2 MB
05. Cluster Analysis - Gaussian Mixture Model/2. Case Study Briefing and Clustering.mp4
15.0 MB
02. Survival Analysis/6. Python - Loading Data.mp4
14.5 MB
05. Cluster Analysis - Gaussian Mixture Model/14. Will you help me.mp4
14.4 MB
04. CHAID/4. Python - Installing libraries.mp4
14.3 MB
08. Random Forest and Feature Selection/12. Python .- Feature Importance for Business Analytics.mp4
14.1 MB
10. XGBoost and SHAP/14. Python - XGBoost Model.mp4
14.1 MB
06. Dimension Reduction/9. Python - Optimal Number of Components.mp4
13.3 MB
10. XGBoost and SHAP/17. Python - MAE and RSME.mp4
13.2 MB
08. Random Forest and Feature Selection/9. Confusion Matrix, AUC, and F1-Score.mp4
13.2 MB
02. Survival Analysis/7. Python - Transforming Dependent Variable.mp4
12.7 MB
02. Survival Analysis/13. Python - Plotting Cumulative Curves.mp4
12.5 MB
05. Cluster Analysis - Gaussian Mixture Model/3. Gaussian Mixture Model vs. Kmeans.mp4
12.2 MB
04. CHAID/11. Python - Transforming Experience Variable.mp4
12.2 MB
10. XGBoost and SHAP/6. How XGBoost works part 1.mp4
12.2 MB
04. CHAID/8. Python - Removing column and unique values check.mp4
12.0 MB
06. Dimension Reduction/7. Python - Correlation Matrix.mp4
11.9 MB
10. XGBoost and SHAP/21. Python - Dependency Plots.mp4
11.8 MB
05. Cluster Analysis - Gaussian Mixture Model/5. Python - Loading Data.mp4
11.7 MB
02. Survival Analysis/17. Python - Plotting both Survival Curves.mp4
11.6 MB
01. Introduction/3. Course Resources, Material, and Colab setup - Important!.mp4
11.3 MB
02. Survival Analysis/4. Python - Changing Directory.mp4
11.1 MB
08. Random Forest and Feature Selection/6. Random Forest.mp4
10.7 MB
02. Survival Analysis/16. Python - Kaplan-Meyer Estimator per Gender.mp4
10.4 MB
04. CHAID/7. CHAID Statistics and Quirks.mp4
10.2 MB
06. Dimension Reduction/2. What is Dimension Reduction.mp4
9.9 MB
09. LIME - Explainable Artificial Intelligence/2. LIME.mp4
9.8 MB
07. Association Rule Learning/5. Association Rule Learning.mp4
9.6 MB
02. Survival Analysis/18. Python - Log Rank Test.mp4
9.2 MB
05. Cluster Analysis - Gaussian Mixture Model/4. Python - Changing Directory and Importing Libraries.mp4
8.8 MB
02. Survival Analysis/5. Python - Importing Libraries.mp4
8.8 MB
02. Survival Analysis/10. Python - Kaplan-Meyer Estimator.mp4
8.8 MB
10. XGBoost and SHAP/18. SHAP.mp4
8.6 MB
06. Dimension Reduction/11. Python - PCA.mp4
8.6 MB
08. Random Forest and Feature Selection/10. Python - Random Forest Predictions.mp4
8.3 MB
07. Association Rule Learning/3. Python - Importing Libraries.mp4
8.2 MB
04. CHAID/6. Introducing CHAID.mp4
8.2 MB
06. Dimension Reduction/4. Python - Importing Libraries.mp4
8.2 MB
08. Random Forest and Feature Selection/3. Python - Importing Libraries.mp4
8.1 MB
08. Random Forest and Feature Selection/8. Python - Random Forest.mp4
8.0 MB
06. Dimension Reduction/8. Python - Standardizing Variables.mp4
8.0 MB
04. CHAID/1. Game Plan.mp4
7.8 MB
06. Dimension Reduction/5. Python - Loading Data.mp4
7.6 MB
10. XGBoost and SHAP/13. Python - XGBoost Parameters.mp4
7.5 MB
08. Random Forest and Feature Selection/4. Python - Loading Data.mp4
7.3 MB
10. XGBoost and SHAP/12. XGBoost Parameters.mp4
7.0 MB
06. Dimension Reduction/3. Principal Component Analysis.mp4
6.9 MB
08. Random Forest and Feature Selection/2. Case Study Briefing and Step by Step Guide.mp4
6.8 MB
03. Cox Proportional Hazard Regression/2. Cox Proportional Hazard Regression.mp4
6.7 MB
06. Dimension Reduction/14. Python - t-SNE.mp4
6.7 MB
07. Association Rule Learning/4. Python - Loading Data.mp4
6.4 MB
10. XGBoost and SHAP/7. How XGBoost works part 2.mp4
6.4 MB
06. Dimension Reduction/6. Python - Transforming String Variables.mp4
6.4 MB
04. CHAID/3. Problem Statement.mp4
6.3 MB
02. Survival Analysis/9. Censoring.mp4
6.3 MB
02. Survival Analysis/8. Kaplan-Meyer Estimator.mp4
6.2 MB
03. Cox Proportional Hazard Regression/6. Python - Regression Summary Visualization.mp4
6.2 MB
10. XGBoost and SHAP/3. Python - Importing Libraries.mp4
6.0 MB
02. Survival Analysis/12. Python - Plotting Survival Curves.mp4
5.9 MB
04. CHAID/14. Python - CHAID Preparation.mp4
5.9 MB
10. XGBoost and SHAP/15. Evaluate Regression-based Problems.mp4
5.7 MB
10. XGBoost and SHAP/5. Introducing XGBoost.mp4
5.6 MB
03. Cox Proportional Hazard Regression/7. Cox Proportional Hazard Regression Challenge.pdf
5.6 MB
06. Dimension Reduction/10. Python - Cumulative Explained Variance.mp4
5.6 MB
05. Cluster Analysis - Gaussian Mixture Model/6. AIC, BIC, and Step-by-Step Guide.mp4
5.4 MB
04. CHAID/9. Python - Visualizing Jobs Variable.mp4
5.3 MB
07. Association Rule Learning/8. Apriori algorithm.mp4
5.3 MB
10. XGBoost and SHAP/22. Python - Global Interpretability.mp4
5.1 MB
03. Cox Proportional Hazard Regression/1. Game Plan.mp4
5.1 MB
06. Dimension Reduction/1. Game Plan.mp4
5.0 MB
10. XGBoost and SHAP/10. Python - Training and Test Set.mp4
4.9 MB
07. Association Rule Learning/2. Step by Step Guide and Case Study Briefing.mp4
4.9 MB
08. Random Forest and Feature Selection/5. Python - Transforming Categorical Variables.mp4
4.8 MB
10. XGBoost and SHAP/11. Python - XGBoost Matrices.mp4
4.8 MB
04. CHAID/2. Case Study Briefing and Step by Step Guide.mp4
4.7 MB
05. Cluster Analysis - Gaussian Mixture Model/1. Game Plan.mp4
4.7 MB
06. Dimension Reduction/16. Dimension Reduction Challenge.pdf
4.2 MB
05. Cluster Analysis - Gaussian Mixture Model/8. Python - Gaussian Mixture Model.mp4
4.1 MB
02. Survival Analysis/15. Python - Subsetting Dataframe.mp4
3.9 MB
02. Survival Analysis/3. Case Study Briefing and Step by Step Guide.mp4
3.7 MB
10. XGBoost and SHAP/2. Case Study Briefing and Step by Step Guide.mp4
3.4 MB
07. Association Rule Learning/1. Game Plan.mp4
3.2 MB
04. CHAID/13. Python - Modify other variables to dummy variables.mp4
3.2 MB
03. Cox Proportional Hazard Regression/3. Case Study Briefing and Step by Step Guide.mp4
3.2 MB
07. Association Rule Learning/11. Association Rule Learning Challenge.pdf
3.1 MB
02. Survival Analysis/14. Log Rank Test.mp4
3.0 MB
10. XGBoost and SHAP/1. Game Plan for XGBoost and SHAP.mp4
3.0 MB
10. XGBoost and SHAP/9. Python - Isolate X and Y.mp4
2.8 MB
08. Random Forest and Feature Selection/1. Game Plan for Random Forest.mp4
2.7 MB
10. XGBoost and SHAP/16. Python - Predictions.mp4
2.6 MB
05. Cluster Analysis - Gaussian Mixture Model/12. Gaussian Mixture Model Challenge.pdf
2.6 MB
10. XGBoost and SHAP/19. Python - Preparing SHAP.mp4
2.5 MB
09. LIME - Explainable Artificial Intelligence/1. Game Plan for Explainable Artificial Intelligence.mp4
2.5 MB
09. LIME - Explainable Artificial Intelligence/5. LIME Challenge.pdf
2.4 MB
10. XGBoost and SHAP/23. XGBoost and SHAP Challenge.pdf
2.3 MB
04. CHAID/17. CHAID Challenge.pdf
2.2 MB
08. Random Forest and Feature Selection/13. Random Forest Challenge.pdf
2.1 MB
02. Survival Analysis/19. Survival Analysis Challenge.pdf
2.0 MB
10. XGBoost and SHAP/8. XGBoost quirks.mp4
1.8 MB
04. CHAID/16. Python - Data Visualization with CHAID Model.vtt
15.2 kB
10. XGBoost and SHAP/24. Python - Challenge Solutions.vtt
13.7 kB
06. Dimension Reduction/17. Python - Challenge Solutions.vtt
13.4 kB
04. CHAID/18. Python - Challenge solutions.vtt
12.2 kB
09. LIME - Explainable Artificial Intelligence/6. Python - Challenge Solutions.vtt
9.9 kB
07. Association Rule Learning/12. Python - Challenge Solutions.vtt
9.5 kB
05. Cluster Analysis - Gaussian Mixture Model/13. Python - Challenge solutions.vtt
9.5 kB
02. Survival Analysis/20. Python - Survival Analysis Challenge Solutions.vtt
9.1 kB
04. CHAID/17. Extra Resources and Challenge.vtt
8.9 kB
09. LIME - Explainable Artificial Intelligence/3. Python - Preparing LIME.vtt
8.7 kB
08. Random Forest and Feature Selection/14. Python - Challenge Solutions.vtt
8.0 kB
06. Dimension Reduction/12. Python - PCA interpretation.vtt
7.5 kB
08. Random Forest and Feature Selection/13. Extra Resources and Challenge.vtt
7.4 kB
08. Random Forest and Feature Selection/9. Confusion Matrix, AUC, and F1-Score.vtt
7.4 kB
03. Cox Proportional Hazard Regression/8. Python - Solution Challenges.vtt
7.0 kB
05. Cluster Analysis - Gaussian Mixture Model/3. Gaussian Mixture Model vs. Kmeans.vtt
6.8 kB
08. Random Forest and Feature Selection/6. Random Forest.vtt
6.7 kB
01. Introduction/3. Course Resources, Material, and Colab setup - Important!.vtt
6.7 kB
06. Dimension Reduction/16. Extra Resources and Challenge.vtt
6.5 kB
04. CHAID/12. Python - Transform Minimum Variable.vtt
6.3 kB
03. Cox Proportional Hazard Regression/4. Python - Preparing Script and Data.vtt
6.2 kB
04. CHAID/7. CHAID Statistics and Quirks.vtt
6.1 kB
07. Association Rule Learning/9. Python - Association Rule Learning.vtt
6.0 kB
10. XGBoost and SHAP/20. Python - Local Interpretability.vtt
6.0 kB
03. Cox Proportional Hazard Regression/7. Extra Resources and Challenge.vtt
5.8 kB
07. Association Rule Learning/5. Association Rule Learning.vtt
5.8 kB
05. Cluster Analysis - Gaussian Mixture Model/12. Extra Resources and Challenge.vtt
5.8 kB
10. XGBoost and SHAP/23. Extra Resources and Challenge.vtt
5.8 kB
02. Survival Analysis/11. Python - Calculating Specific Events.vtt
5.7 kB
04. CHAID/6. Introducing CHAID.vtt
5.7 kB
04. CHAID/15. Python - CHAID Model.vtt
5.7 kB
04. CHAID/10. Python - Transforming Jobs Variable.vtt
5.7 kB
07. Association Rule Learning/11. Extra Resources and Challenge.vtt
5.5 kB
06. Dimension Reduction/13. Manifold Learning and t-SNE.vtt
5.4 kB
05. Cluster Analysis - Gaussian Mixture Model/2. Case Study Briefing and Clustering.vtt
5.3 kB
10. XGBoost and SHAP/18. SHAP.vtt
5.3 kB
06. Dimension Reduction/2. What is Dimension Reduction.vtt
5.2 kB
02. Survival Analysis/19. Extra Resources and Survival Analysis Challenge.vtt
5.2 kB
09. LIME - Explainable Artificial Intelligence/5. Extra Resources and Challenge.vtt
5.1 kB
10. XGBoost and SHAP/17. Python - MAE and RSME.vtt
4.9 kB
07. Association Rule Learning/6. Python - Create Transaction List.vtt
4.7 kB
08. Random Forest and Feature Selection/11. Python - Classification Report.vtt
4.5 kB
07. Association Rule Learning/7. Python - Encoding Transactions.vtt
4.5 kB
04. CHAID/11. Python - Transforming Experience Variable.vtt
4.5 kB
10. XGBoost and SHAP/12. XGBoost Parameters.vtt
4.4 kB
09. LIME - Explainable Artificial Intelligence/2. LIME.vtt
4.3 kB
02. Survival Analysis/2. Survival Analyisis Introduction.vtt
4.2 kB
09. LIME - Explainable Artificial Intelligence/4. Python - Explaining Predictions.vtt
4.1 kB
10. XGBoost and SHAP/7. How XGBoost works part 2.vtt
4.1 kB
06. Dimension Reduction/7. Python - Correlation Matrix.vtt
4.1 kB
06. Dimension Reduction/3. Principal Component Analysis.vtt
4.0 kB
02. Survival Analysis/4. Python - Changing Directory.vtt
4.0 kB
08. Random Forest and Feature Selection/7. Python - Training and Test Set.vtt
4.0 kB
10. XGBoost and SHAP/13. Python - XGBoost Parameters.vtt
3.9 kB
05. Cluster Analysis - Gaussian Mixture Model/9. Python - Cluster Prediction.vtt
3.9 kB
06. Dimension Reduction/9. Python - Optimal Number of Components.vtt
3.9 kB
04. CHAID/4. Python - Installing libraries.vtt
3.8 kB
03. Cox Proportional Hazard Regression/2. Cox Proportional Hazard Regression.vtt
3.8 kB
04. CHAID/3. Problem Statement.vtt
3.8 kB
10. XGBoost and SHAP/15. Evaluate Regression-based Problems.vtt
3.8 kB
05. Cluster Analysis - Gaussian Mixture Model/10. Python - Probability of belonging to each cluster.vtt
3.7 kB
10. XGBoost and SHAP/6. How XGBoost works part 1.vtt
3.6 kB
10. XGBoost and SHAP/5. Introducing XGBoost.vtt
3.6 kB
02. Survival Analysis/9. Censoring.vtt
3.6 kB
06. Dimension Reduction/15. Python -Visualizing Manifold Learning.vtt
3.6 kB
10. XGBoost and SHAP/21. Python - Dependency Plots.vtt
3.5 kB
04. CHAID/8. Python - Removing column and unique values check.vtt
3.4 kB
06. Dimension Reduction/4. Python - Importing Libraries.vtt
3.3 kB
02. Survival Analysis/6. Python - Loading Data.vtt
3.3 kB
02. Survival Analysis/8. Kaplan-Meyer Estimator.vtt
3.3 kB
04. CHAID/1. Game Plan.vtt
3.3 kB
08. Random Forest and Feature Selection/2. Case Study Briefing and Step by Step Guide.vtt
3.1 kB
02. Survival Analysis/10. Python - Kaplan-Meyer Estimator.vtt
3.1 kB
10. XGBoost and SHAP/14. Python - XGBoost Model.vtt
3.1 kB
11. Bonus Section/1. Bonus Lecture.html
3.1 kB
04. CHAID/5. Python - Importing Libraries and Data.vtt
3.0 kB
01. Introduction/1. Introduction to Data Mining course for Business Analytics & Data Analysis.vtt
3.0 kB
02. Survival Analysis/7. Python - Transforming Dependent Variable.vtt
2.9 kB
02. Survival Analysis/16. Python - Kaplan-Meyer Estimator per Gender.vtt
2.9 kB
08. Random Forest and Feature Selection/12. Python .- Feature Importance for Business Analytics.vtt
2.9 kB
06. Dimension Reduction/11. Python - PCA.vtt
2.8 kB
05. Cluster Analysis - Gaussian Mixture Model/6. AIC, BIC, and Step-by-Step Guide.vtt
2.8 kB
01. Introduction/4. Diogo's Introduction and Background.vtt
2.8 kB
08. Random Forest and Feature Selection/3. Python - Importing Libraries.vtt
2.8 kB
07. Association Rule Learning/8. Apriori algorithm.vtt
2.8 kB
10. XGBoost and SHAP/2. Case Study Briefing and Step by Step Guide.vtt
2.8 kB
05. Cluster Analysis - Gaussian Mixture Model/4. Python - Changing Directory and Importing Libraries.vtt
2.7 kB
02. Survival Analysis/1. Game Plan for Survival Analysis section.vtt
2.7 kB
04. CHAID/14. Python - CHAID Preparation.vtt
2.7 kB
10. XGBoost and SHAP/4. Python - Loading Data.vtt
2.7 kB
08. Random Forest and Feature Selection/10. Python - Random Forest Predictions.vtt
2.7 kB
06. Dimension Reduction/14. Python - t-SNE.vtt
2.6 kB
05. Cluster Analysis - Gaussian Mixture Model/5. Python - Loading Data.vtt
2.6 kB
10. XGBoost and SHAP/22. Python - Global Interpretability.vtt
2.6 kB
02. Survival Analysis/3. Case Study Briefing and Step by Step Guide.vtt
2.6 kB
02. Survival Analysis/13. Python - Plotting Cumulative Curves.vtt
2.6 kB
03. Cox Proportional Hazard Regression/3. Case Study Briefing and Step by Step Guide.vtt
2.5 kB
02. Survival Analysis/17. Python - Plotting both Survival Curves.vtt
2.5 kB
03. Cox Proportional Hazard Regression/6. Python - Regression Summary Visualization.vtt
2.4 kB
02. Survival Analysis/12. Python - Plotting Survival Curves.vtt
2.4 kB
06. Dimension Reduction/1. Game Plan.vtt
2.3 kB
10. XGBoost and SHAP/10. Python - Training and Test Set.vtt
2.3 kB
07. Association Rule Learning/3. Python - Importing Libraries.vtt
2.1 kB
02. Survival Analysis/5. Python - Importing Libraries.vtt
2.1 kB
06. Dimension Reduction/10. Python - Cumulative Explained Variance.vtt
2.0 kB
04. CHAID/9. Python - Visualizing Jobs Variable.vtt
2.0 kB
05. Cluster Analysis - Gaussian Mixture Model/1. Game Plan.vtt
1.9 kB
08. Random Forest and Feature Selection/4. Python - Loading Data.vtt
1.9 kB
06. Dimension Reduction/6. Python - Transforming String Variables.vtt
1.9 kB
08. Random Forest and Feature Selection/8. Python - Random Forest.vtt
1.9 kB
03. Cox Proportional Hazard Regression/1. Game Plan.vtt
1.9 kB
10. XGBoost and SHAP/3. Python - Importing Libraries.vtt
1.8 kB
02. Survival Analysis/15. Python - Subsetting Dataframe.vtt
1.8 kB
07. Association Rule Learning/4. Python - Loading Data.vtt
1.8 kB
02. Survival Analysis/14. Log Rank Test.vtt
1.7 kB
10. XGBoost and SHAP/11. Python - XGBoost Matrices.vtt
1.7 kB
08. Random Forest and Feature Selection/5. Python - Transforming Categorical Variables.vtt
1.6 kB
10. XGBoost and SHAP/1. Game Plan for XGBoost and SHAP.vtt
1.6 kB
07. Association Rule Learning/1. Game Plan.vtt
1.6 kB
10. XGBoost and SHAP/16. Python - Predictions.vtt
1.6 kB
05. Cluster Analysis - Gaussian Mixture Model/8. Python - Gaussian Mixture Model.vtt
1.5 kB
10. XGBoost and SHAP/9. Python - Isolate X and Y.vtt
1.4 kB
08. Random Forest and Feature Selection/1. Game Plan for Random Forest.vtt
1.3 kB
10. XGBoost and SHAP/19. Python - Preparing SHAP.vtt
1.3 kB
10. XGBoost and SHAP/8. XGBoost quirks.vtt
1.3 kB
04. CHAID/13. Python - Modify other variables to dummy variables.vtt
1.2 kB
09. LIME - Explainable Artificial Intelligence/1. Game Plan for Explainable Artificial Intelligence.vtt
1.1 kB
05. Cluster Analysis - Gaussian Mixture Model/14. Will you help me.vtt
1.0 kB
05. Cluster Analysis - Gaussian Mixture Model/15. Your feedback is invaluable.html
521 Bytes
10. XGBoost and SHAP/25. End of Course Feedback.html
447 Bytes
01. Introduction/2. Your resources.html
371 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!