搜索
[FTUForum.com] [UDEMY] Deep Learning Prerequisites Linear Regression in Python [FTU]
磁力链接/BT种子名称
[FTUForum.com] [UDEMY] Deep Learning Prerequisites Linear Regression in Python [FTU]
磁力链接/BT种子简介
种子哈希:
b62ba45397ca5d56ca69de0d05850a70f673e212
文件大小:
999.52M
已经下载:
2354
次
下载速度:
极快
收录时间:
2020-01-27
最近下载:
2025-09-10
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:B62BA45397CA5D56CA69DE0D05850A70F673E212
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
cosh
03年舞蹈生
噗噗
pua
bullet.train.2022
の団地妻
男技师帮两个骚逼女按摩 摸乳又摸逼 轮流操两个女顾客
这才叫女上后入
ftkd-032
にのみ
onlyfans.2025. xxx
游轮动漫
邪娠娼館
这才叫女上后入跟一张小嘴一样
525dht-0117
露阴
会议
throated
hmn-350
fc2ppv-4419480
抛公弃子
remido
糖心vlogup主mini肉
内射
被删减片段
n1115
花裤
电影
07的
jk 白虎 玉足
文件列表
6. Appendix/3. Windows-Focused Environment Setup 2018.mp4
195.3 MB
6. Appendix/11. What order should I take your courses in (part 2).mp4
85.6 MB
6. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
6. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.1 MB
6. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
6. Appendix/11. What order should I take your courses in (part 2).vtt
39.5 MB
3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.mp4
37.8 MB
1. Welcome/1. Welcome.mp4
33.6 MB
6. Appendix/10. What order should I take your courses in (part 1).mp4
30.7 MB
1. Welcome/2. Introduction and Outline.mp4
29.8 MB
2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.mp4
25.9 MB
6. Appendix/5. How to Code by Yourself (part 1).mp4
25.7 MB
4. Practical machine learning issues/11. Gradient Descent Tutorial.mp4
23.9 MB
2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).mp4
20.3 MB
6. Appendix/7. How to Succeed in this Course (Long Version).mp4
19.2 MB
2. 1-D Linear Regression Theory and Code/7. Demonstrating Moore's Law in Code.mp4
18.3 MB
4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.mp4
18.1 MB
6. Appendix/12. Python 2 vs Python 3.mp4
17.7 MB
3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).mp4
17.2 MB
3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.mp4
15.6 MB
6. Appendix/6. How to Code by Yourself (part 2).mp4
15.5 MB
2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.mp4
15.1 MB
3. Multiple linear regression and polynomial regression/1. Define the multi-dimensional problem and derive the solution (Updated Version).mp4
15.1 MB
3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.mp4
12.9 MB
2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.mp4
11.9 MB
4. Practical machine learning issues/1. What do all these letters mean.mp4
10.1 MB
4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.mp4
8.9 MB
1. Welcome/3. What is machine learning How does linear regression play a role.mp4
8.8 MB
4. Practical machine learning issues/15. L1 Regularization - Code.mp4
8.7 MB
4. Practical machine learning issues/5. Categorical inputs.mp4
8.6 MB
4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.mp4
8.5 MB
5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.mp4
8.5 MB
4. Practical machine learning issues/9. L2 Regularization - Code.mp4
8.5 MB
5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.mp4
7.5 MB
4. Practical machine learning issues/8. L2 Regularization - Theory.mp4
7.0 MB
4. Practical machine learning issues/10. The Dummy Variable Trap.mp4
6.4 MB
4. Practical machine learning issues/2. Interpreting the Weights.mp4
6.3 MB
6. Appendix/1. What is the Appendix.mp4
5.7 MB
4. Practical machine learning issues/16. L1 vs L2 Regularization.mp4
5.0 MB
4. Practical machine learning issues/14. L1 Regularization - Theory.mp4
4.9 MB
2. 1-D Linear Regression Theory and Code/6. R-squared in code.mp4
4.7 MB
1. Welcome/4. Introduction to Moore's Law Problem.mp4
4.6 MB
4. Practical machine learning issues/3. Generalization error, train and test sets.mp4
4.6 MB
6. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
4.2 MB
4. Practical machine learning issues/6. One-Hot Encoding Quiz.mp4
4.0 MB
4. Practical machine learning issues/12. Gradient Descent for Linear Regression.mp4
3.7 MB
3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.mp4
3.7 MB
1. Welcome/6. How to Succeed in this Course.mp4
3.5 MB
3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.mp4
3.3 MB
2. 1-D Linear Regression Theory and Code/8. R-squared Quiz 1.mp4
2.9 MB
2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.mp4
1.1 MB
6. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt
28.4 kB
6. Appendix/5. How to Code by Yourself (part 1).vtt
20.3 kB
6. Appendix/3. Windows-Focused Environment Setup 2018.vtt
17.8 kB
2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).vtt
14.7 kB
6. Appendix/10. What order should I take your courses in (part 1).vtt
14.4 kB
6. Appendix/7. How to Succeed in this Course (Long Version).vtt
13.1 kB
6. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt
12.7 kB
6. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.vtt
12.5 kB
6. Appendix/6. How to Code by Yourself (part 2).vtt
11.9 kB
3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.vtt
11.6 kB
3. Multiple linear regression and polynomial regression/1. Define the multi-dimensional problem and derive the solution (Updated Version).vtt
10.5 kB
2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.vtt
9.8 kB
4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.vtt
8.4 kB
4. Practical machine learning issues/1. What do all these letters mean.vtt
7.2 kB
2. 1-D Linear Regression Theory and Code/7. Demonstrating Moore's Law in Code.vtt
6.3 kB
4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.vtt
5.8 kB
6. Appendix/12. Python 2 vs Python 3.vtt
5.5 kB
1. Welcome/2. Introduction and Outline.vtt
5.4 kB
1. Welcome/3. What is machine learning How does linear regression play a role.vtt
5.4 kB
5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.vtt
5.2 kB
3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.vtt
5.0 kB
2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.vtt
5.0 kB
4. Practical machine learning issues/10. The Dummy Variable Trap.vtt
5.0 kB
4. Practical machine learning issues/8. L2 Regularization - Theory.vtt
5.0 kB
5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.vtt
4.9 kB
4. Practical machine learning issues/11. Gradient Descent Tutorial.vtt
4.9 kB
3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.vtt
4.6 kB
4. Practical machine learning issues/5. Categorical inputs.vtt
4.4 kB
3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).vtt
4.4 kB
2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.vtt
4.2 kB
1. Welcome/1. Welcome.vtt
4.1 kB
4. Practical machine learning issues/16. L1 vs L2 Regularization.vtt
3.8 kB
4. Practical machine learning issues/2. Interpreting the Weights.vtt
3.8 kB
4. Practical machine learning issues/14. L1 Regularization - Theory.vtt
3.7 kB
1. Welcome/6. How to Succeed in this Course.vtt
3.6 kB
1. Welcome/4. Introduction to Moore's Law Problem.vtt
3.5 kB
6. Appendix/1. What is the Appendix.vtt
3.4 kB
4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.vtt
3.1 kB
4. Practical machine learning issues/15. L1 Regularization - Code.vtt
3.1 kB
6. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.vtt
3.1 kB
4. Practical machine learning issues/9. L2 Regularization - Code.vtt
3.0 kB
4. Practical machine learning issues/12. Gradient Descent for Linear Regression.vtt
2.8 kB
4. Practical machine learning issues/3. Generalization error, train and test sets.vtt
2.6 kB
3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.vtt
2.4 kB
4. Practical machine learning issues/6. One-Hot Encoding Quiz.vtt
2.3 kB
2. 1-D Linear Regression Theory and Code/8. R-squared Quiz 1.vtt
2.0 kB
3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.vtt
1.9 kB
2. 1-D Linear Regression Theory and Code/6. R-squared in code.vtt
1.5 kB
2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.vtt
1.4 kB
0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url
328 Bytes
0. Websites you may like/5. (Discuss.FTUForum.com) FTU Discussion Forum.url
294 Bytes
0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url
286 Bytes
0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url
239 Bytes
0. Websites you may like/How you can help Team-FTU.txt
237 Bytes
0. Websites you may like/3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url
163 Bytes
1. Welcome/5. What can linear regression be used for.html
143 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!