搜索
[FreeCoursesOnline.Me] PacktPub - Master Deep Learning with TensorFlow 2.0 in Python [2019] [Video]
磁力链接/BT种子名称
[FreeCoursesOnline.Me] PacktPub - Master Deep Learning with TensorFlow 2.0 in Python [2019] [Video]
磁力链接/BT种子简介
种子哈希:
8ef76cbab81900d4d663641cb4f159b74fbcb062
文件大小:
2.3G
已经下载:
8806
次
下载速度:
极快
收录时间:
2020-01-23
最近下载:
2025-10-07
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:8EF76CBAB81900D4D663641CB4F159B74FBCB062
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
少女日记
资源截图
API Integration
显示图片
最近搜索
blowjob compilation
rebd-916
naimei0727
cumsho
club-855
strapondreamer
濡
赛满传媒
远嫁蛮荒凤鸣九州84集刘盈张旋-免费短剧
hhad-080
fc2-ppv-3094833
room-020
sdde-634
第520弹
2025自拍
hbad-550
weagogo高清
fc2 4529280
ova人妻女教师
dism-010
杨晨晨
meyd-664
涉母大侠第
fc2ppv美女
外孙
sdnm-030
mdon-084
savr-784
轮奸
丸崽
文件列表
01.Welcome! Course introduction/0101.Meet your instructors and why you should study machine learning.mp4
88.9 MB
06.Going deeper Introduction to deep neural networks/0603.Understanding deep nets in depth.mp4
61.0 MB
02.Introduction to neural networks/0212.N-parameter gradient descent.mp4
60.4 MB
02.Introduction to neural networks/0211.One parameter gradient descent.mp4
59.1 MB
06.Going deeper Introduction to deep neural networks/0607.Backpropagation.mp4
55.3 MB
03.Setting up the working environment/0306.Installing TensorFlow 2.mp4
53.7 MB
02.Introduction to neural networks/0201.Introduction to neural networks.mp4
48.0 MB
12.Business case/1204.Preprocessing the data.mp4
46.7 MB
02.Introduction to neural networks/0206.The linear model. Multiple inputs and multiple outputs.mp4
44.3 MB
05.TensorFlow - An introduction/0501.TensorFlow outline.mp4
44.0 MB
02.Introduction to neural networks/0203.Types of machine learning.mp4
42.8 MB
10.Preprocessing/1003.Standardization.mp4
42.3 MB
13.Conclusion/1305.An overview of non-NN approaches.mp4
42.1 MB
01.Welcome! Course introduction/0102.What does the course cover.mp4
41.0 MB
13.Conclusion/1301.See how much you have learned.mp4
40.8 MB
06.Going deeper Introduction to deep neural networks/0604.Why do we need non-linearities.mp4
39.8 MB
06.Going deeper Introduction to deep neural networks/0605.Activation functions.mp4
39.8 MB
05.TensorFlow - An introduction/0502.TensorFlow 2 intro.mp4
39.7 MB
07.Overfitting/0703.Training and validation.mp4
39.3 MB
09.Gradient descent and learning rates/0904.Learning rate schedules.mp4
38.9 MB
11.The MNIST example/1105.Preprocess the data - shuffle and batch the data.mp4
38.4 MB
04.Minimal example - your first machine learning algorithm/0401.Minimal example - part 1.mp4
38.1 MB
03.Setting up the working environment/0302.Why Python and why Jupyter.mp4
36.4 MB
09.Gradient descent and learning rates/0901.Stochastic gradient descent.mp4
36.2 MB
07.Overfitting/0701.Underfitting and overfitting.mp4
35.7 MB
02.Introduction to neural networks/0210.Cross-entropy loss.mp4
35.0 MB
11.The MNIST example/1102.How to tackle the MNIST.mp4
34.9 MB
05.TensorFlow - An introduction/0505.Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4
34.5 MB
06.Going deeper Introduction to deep neural networks/0602.What is a deep net.mp4
34.2 MB
07.Overfitting/0702.Underfitting and overfitting - classification.mp4
34.1 MB
10.Preprocessing/1005.One-hot and binary encoding.mp4
33.8 MB
05.TensorFlow - An introduction/0506.Interpreting the result and extracting the weights and bias.mp4
32.9 MB
03.Setting up the working environment/0303.Installing Anaconda.mp4
32.9 MB
07.Overfitting/0704.Training, validation, and test.mp4
32.8 MB
04.Minimal example - your first machine learning algorithm/0404.Minimal example - part 4.mp4
31.9 MB
12.Business case/1201.Exploring the dataset and identifying predictors.mp4
31.6 MB
09.Gradient descent and learning rates/0906.Adaptive learning rate schedules.mp4
31.3 MB
09.Gradient descent and learning rates/0907.Adaptive moment estimation.mp4
30.5 MB
07.Overfitting/0706.Early stopping.mp4
29.7 MB
13.Conclusion/1304.An overview of RNNs.mp4
28.7 MB
11.The MNIST example/1106.Outline the model.mp4
28.7 MB
11.The MNIST example/1104.Preprocess the data - create a validation dataset and scale the data.mp4
28.4 MB
02.Introduction to neural networks/0202.Training the model.mp4
28.1 MB
12.Business case/1206.Learning and interpreting the result.mp4
27.7 MB
08.Initialization/0801.Initialization - Introduction.mp4
27.4 MB
02.Introduction to neural networks/0204.The linear model.mp4
27.3 MB
07.Overfitting/0705.N-fold cross validation.mp4
26.8 MB
10.Preprocessing/1001.Preprocessing introduction.mp4
26.8 MB
06.Going deeper Introduction to deep neural networks/0606.Softmax activation.mp4
26.2 MB
06.Going deeper Introduction to deep neural networks/0608.Backpropagation - visual representation.mp4
25.6 MB
04.Minimal example - your first machine learning algorithm/0402.Minimal example - part 2.mp4
24.9 MB
02.Introduction to neural networks/0205.The linear model. Multiple inputs.mp4
24.8 MB
02.Introduction to neural networks/0207.Graphical representation.mp4
23.0 MB
05.TensorFlow - An introduction/0507.Customizing your model.mp4
22.7 MB
12.Business case/1207.Setting an early stopping mechanism.mp4
22.5 MB
02.Introduction to neural networks/0209.L2-norm loss.mp4
22.4 MB
11.The MNIST example/1101.The dataset.mp4
21.8 MB
06.Going deeper Introduction to deep neural networks/0601.Layers.mp4
21.5 MB
11.The MNIST example/1108.Learning.mp4
21.4 MB
04.Minimal example - your first machine learning algorithm/0403.Minimal example - part 3.mp4
21.4 MB
03.Setting up the working environment/0305.The Jupyter dashboard - part 2.mp4
21.4 MB
08.Initialization/0803.Xavier initialization.mp4
20.1 MB
09.Gradient descent and learning rates/0903.Momentum.mp4
19.9 MB
13.Conclusion/1303.An overview of CNNs.mp4
19.5 MB
10.Preprocessing/1004.Dealing with categorical data.mp4
19.1 MB
12.Business case/1205.Load the preprocessed data.mp4
19.1 MB
02.Introduction to neural networks/0208.The objective function.mp4
18.6 MB
13.Conclusion/1302.What's further out there in the machine and deep learning world.mp4
18.4 MB
11.The MNIST example/1103.Importing the relevant packages and load the data.mp4
16.6 MB
11.The MNIST example/1109.Testing the model.mp4
16.0 MB
09.Gradient descent and learning rates/0902.Gradient descent pitfalls.mp4
15.0 MB
12.Business case/1203.Balancing the dataset.mp4
14.4 MB
05.TensorFlow - An introduction/0504.Types of file formats in TensorFlow and data handling.mp4
13.9 MB
11.The MNIST example/1107.Select the loss and the optimizer.mp4
13.3 MB
08.Initialization/0802.Types of simple initializations.mp4
12.9 MB
10.Preprocessing/1002.Basic preprocessing.mp4
11.6 MB
09.Gradient descent and learning rates/0905.Learning rate schedules. A picture.mp4
11.5 MB
12.Business case/1208.Testing the model.mp4
10.1 MB
12.Business case/1202.Outlining the business case solution.mp4
10.0 MB
03.Setting up the working environment/0304.The Jupyter dashboard - part 1.mp4
9.7 MB
05.TensorFlow - An introduction/0503.A Note on Coding in TensorFlow.mp4
8.5 MB
03.Setting up the working environment/0301.Setting up the environment - An introduction - Do not skip, please!.mp4
7.2 MB
Exercise Files/exercise_files.zip
1.4 MB
0. Websites you may like/0. (1Hack.Us) Premium Tutorials-Guides-Articles & Community based Forum.url
377 Bytes
0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url
328 Bytes
0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url
286 Bytes
0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url
239 Bytes
0. Websites you may like/How you can help Team-FTU.txt
237 Bytes
0. Websites you may like/3. (NulledPremium.com) Download E-Learning, E-Books, Audio-Books, Comics, Articles and more... etc.url
163 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!