搜索
[FreeCourseSite.com] Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子简介
种子哈希:
8c71480827323bd7981edb572ec294ee078fae25
文件大小:
21.97G
已经下载:
2000
次
下载速度:
极快
收录时间:
2022-03-09
最近下载:
2025-07-02
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:8C71480827323BD7981EDB572EC294EE078FAE25
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
小蓝俱乐部
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
51动漫
ai色色
禁漫天堂
草榴社区
哆哔涩漫
海角乱伦社区
TikTok成人版
暗网禁区
91PORN
PornHub
抖音Max
呦乐园
搜同
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
爆乳
接受金主的任务,不穿内衣逛街,去到玩物店挑选道具,买回来任由金主爸爸玩弄
atm
真无码流出
deeper.2025.08
[欧美av]卡住
生死恋
同学
shenshen-2025
极品雪白大奶
evolvedfights
小恩
尾巴
粉嫩小白兔
jur-436
ruby_m
厕拍
spa
皂皂
高清源代码
dainty wilder
missax中文
fc2ppv
步非烟第三
4580568極上ボディーの美巨乳メンエス嬢
[おとちち]
photoshop 2024
fc2ppv-4677381
清纯学妹全程露脸下海直播赚学费
idbd-998
文件列表
19 - Understand and design CNNs/005 Examine feature map activations.mp4
273.2 MB
22 - Style transfer/004 Transferring the screaming bathtub.mp4
227.4 MB
19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition).mp4
211.1 MB
19 - Understand and design CNNs/002 CNN to classify MNIST digits.mp4
210.1 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation.mp4
205.2 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum.mp4
201.9 MB
07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset).mp4
195.8 MB
19 - Understand and design CNNs/004 Classify Gaussian blurs.mp4
194.1 MB
09 - Regularization/004 Dropout regularization in practice.mp4
192.1 MB
16 - Autoencoders/006 Autoencoder with tied weights.mp4
186.4 MB
18 - Convolution and transformations/003 Convolution in code.mp4
181.5 MB
08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader.mp4
180.7 MB
23 - Generative adversarial networks/002 Linear GAN with MNIST.mp4
178.2 MB
07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison.mp4
176.8 MB
12 - More on data/003 CodeChallenge unbalanced data.mp4
174.3 MB
11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits.mp4
169.7 MB
16 - Autoencoders/005 The latent code of MNIST.mp4
169.7 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences.mp4
167.9 MB
07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth.mp4
166.6 MB
12 - More on data/007 Data feature augmentation.mp4
166.0 MB
21 - Transfer learning/007 Pretraining with autoencoders.mp4
164.2 MB
14 - FFN milestone projects/004 Project 2 My solution.mp4
163.3 MB
21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model.mp4
160.8 MB
07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties.mp4
158.5 MB
21 - Transfer learning/005 Transfer learning with ResNet-18.mp4
155.7 MB
19 - Understand and design CNNs/008 Do autoencoders clean Gaussians.mp4
155.1 MB
15 - Weight inits and investigations/009 Learning-related changes in weights.mp4
153.9 MB
07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN.mp4
151.7 MB
10 - Metaparameters (activations, optimizers)/002 The wine quality dataset.mp4
150.5 MB
08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn.mp4
149.8 MB
26 - Where to go from here/002 How to read academic DL papers.mp4
148.7 MB
18 - Convolution and transformations/012 Creating and using custom DataLoaders.mp4
146.3 MB
07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes.mp4
145.9 MB
09 - Regularization/003 Dropout regularization.mp4
145.1 MB
16 - Autoencoders/004 AEs for occlusion.mp4
144.9 MB
10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.mp4
144.8 MB
19 - Understand and design CNNs/011 Discover the Gaussian parameters.mp4
143.3 MB
12 - More on data/001 Anatomy of a torch dataset and dataloader.mp4
142.4 MB
23 - Generative adversarial networks/004 CNN GAN with Gaussians.mp4
142.3 MB
12 - More on data/002 Data size and network size.mp4
142.3 MB
06 - Gradient descent/007 Parametric experiments on g.d.mp4
142.2 MB
07 - ANNs (Artificial Neural Networks)/006 ANN for regression.mp4
142.1 MB
16 - Autoencoders/003 CodeChallenge How many units.mp4
142.0 MB
15 - Weight inits and investigations/005 Xavier and Kaiming initializations.mp4
140.6 MB
19 - Understand and design CNNs/010 CodeChallenge Custom loss functions.mp4
139.3 MB
07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters.mp4
138.5 MB
18 - Convolution and transformations/011 Image transforms.mp4
136.2 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM.mp4
136.0 MB
15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming.mp4
132.6 MB
12 - More on data/010 Save the best-performing model.mp4
132.6 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch.mp4
129.0 MB
12 - More on data/005 Data oversampling in MNIST.mp4
128.5 MB
10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar.mp4
128.0 MB
15 - Weight inits and investigations/002 A surprising demo of weight initializations.mp4
127.5 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes.mp4
126.0 MB
19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters.mp4
125.9 MB
06 - Gradient descent/003 Gradient descent in 1D.mp4
125.1 MB
10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset.mp4
124.6 MB
21 - Transfer learning/003 CodeChallenge letters to numbers.mp4
124.5 MB
20 - CNN milestone projects/002 Project 1 My solution.mp4
124.4 MB
16 - Autoencoders/002 Denoising MNIST.mp4
124.3 MB
11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning.mp4
121.9 MB
03 - Concepts in deep learning/005 Are artificial neurons like biological neurons.mp4
120.2 MB
06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate.mp4
119.1 MB
09 - Regularization/007 L2 regularization in practice.mp4
115.8 MB
29 - Python intro Functions/008 Classes and object-oriented programming.mp4
113.4 MB
31 - Python intro Text and plots/004 Making the graphs look nicer.mp4
112.9 MB
13 - Measuring model performance/004 APRF example 1 wine quality.mp4
112.6 MB
12 - More on data/006 Data noise augmentation (with devset+test).mp4
111.2 MB
05 - Math, numpy, PyTorch/011 Entropy and cross-entropy.mp4
111.1 MB
15 - Weight inits and investigations/004 CodeChallenge Weight variance inits.mp4
109.0 MB
11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset.mp4
106.3 MB
18 - Convolution and transformations/005 The Conv2 class in PyTorch.mp4
105.1 MB
30 - Python intro Flow control/010 Function error checking and handling.mp4
104.7 MB
10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.mp4
104.6 MB
14 - FFN milestone projects/002 Project 1 My solution.mp4
104.6 MB
09 - Regularization/008 L1 regularization in practice.mp4
104.3 MB
13 - Measuring model performance/005 APRF example 2 MNIST.mp4
103.4 MB
08 - Overfitting and cross-validation/004 Cross-validation -- manual separation.mp4
103.1 MB
10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum).mp4
102.8 MB
18 - Convolution and transformations/001 Convolution concepts.mp4
102.7 MB
10 - Metaparameters (activations, optimizers)/009 Activation functions.mp4
101.7 MB
10 - Metaparameters (activations, optimizers)/023 Learning rate decay.mp4
101.6 MB
21 - Transfer learning/001 Transfer learning What, why, and when.mp4
101.3 MB
06 - Gradient descent/005 Gradient descent in 2D.mp4
101.1 MB
11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization.mp4
100.9 MB
05 - Math, numpy, PyTorch/009 Softmax.mp4
100.6 MB
09 - Regularization/012 CodeChallenge Effects of mini-batch size.mp4
100.1 MB
11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth.mp4
99.8 MB
07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!.mp4
99.7 MB
31 - Python intro Text and plots/001 Printing and string interpolation.mp4
99.4 MB
19 - Understand and design CNNs/007 CodeChallenge How wide the FC.mp4
98.6 MB
31 - Python intro Text and plots/006 Images.mp4
98.1 MB
15 - Weight inits and investigations/008 Freezing weights during learning.mp4
97.7 MB
18 - Convolution and transformations/007 Transpose convolution.mp4
97.4 MB
19 - Understand and design CNNs/015 CodeChallenge Varying number of channels.mp4
96.9 MB
10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.mp4
95.9 MB
30 - Python intro Flow control/002 If-else statements, part 2.mp4
95.5 MB
30 - Python intro Flow control/008 while loops.mp4
95.5 MB
30 - Python intro Flow control/006 Initializing variables.mp4
95.5 MB
21 - Transfer learning/002 Transfer learning MNIST - FMNIST.mp4
94.7 MB
10 - Metaparameters (activations, optimizers)/014 Loss functions.mp4
94.7 MB
23 - Generative adversarial networks/001 GAN What, why, and how.mp4
94.1 MB
07 - ANNs (Artificial Neural Networks)/017 Defining models using sequential vs. class.mp4
93.8 MB
09 - Regularization/010 Batch training in action.mp4
93.4 MB
18 - Convolution and transformations/008 Maxmean pooling.mp4
93.4 MB
17 - Running models on a GPU/001 What is a GPU and why use it.mp4
93.0 MB
29 - Python intro Functions/005 Creating functions.mp4
92.7 MB
05 - Math, numpy, PyTorch/012 Minmax and argminargmax.mp4
92.5 MB
08 - Overfitting and cross-validation/002 Cross-validation.mp4
92.5 MB
15 - Weight inits and investigations/007 CodeChallenge Identically random weights.mp4
92.4 MB
30 - Python intro Flow control/003 For loops.mp4
91.4 MB
10 - Metaparameters (activations, optimizers)/020 Optimizers comparison.mp4
91.1 MB
31 - Python intro Text and plots/003 Subplot geometry.mp4
91.0 MB
07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture.mp4
90.0 MB
05 - Math, numpy, PyTorch/008 Matrix multiplication.mp4
89.8 MB
05 - Math, numpy, PyTorch/014 Random sampling and sampling variability.mp4
89.6 MB
09 - Regularization/006 Weight regularization (L1L2) math.mp4
89.6 MB
19 - Understand and design CNNs/013 Dropout in CNNs.mp4
86.7 MB
13 - Measuring model performance/007 Computation time.mp4
85.7 MB
05 - Math, numpy, PyTorch/013 Mean and variance.mp4
85.4 MB
05 - Math, numpy, PyTorch/016 The t-test.mp4
85.3 MB
29 - Python intro Functions/003 Python libraries (pandas).mp4
85.1 MB
18 - Convolution and transformations/009 Pooling in PyTorch.mp4
85.0 MB
05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials.mp4
84.2 MB
09 - Regularization/001 Regularization Concept and methods.mp4
83.9 MB
15 - Weight inits and investigations/003 Theory Why and how to initialize weights.mp4
83.3 MB
08 - Overfitting and cross-validation/007 Splitting data into train, devset, test.mp4
83.1 MB
27 - Python intro Data types/003 Math and printing.mp4
82.3 MB
11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST.mp4
81.7 MB
27 - Python intro Data types/002 Variables.mp4
81.3 MB
06 - Gradient descent/004 CodeChallenge unfortunate starting value.mp4
80.8 MB
27 - Python intro Data types/007 Booleans.mp4
80.6 MB
10 - Metaparameters (activations, optimizers)/006 Batch normalization.mp4
80.5 MB
10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).mp4
80.5 MB
17 - Running models on a GPU/002 Implementation.mp4
80.3 MB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs.mp4
80.0 MB
14 - FFN milestone projects/006 Project 3 My solution.mp4
79.1 MB
25 - Ethics of deep learning/004 Will deep learning take our jobs.mp4
78.8 MB
30 - Python intro Flow control/007 Single-line loops (list comprehension).mp4
78.8 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work.mp4
78.5 MB
03 - Concepts in deep learning/004 Running experiments to understand DL.mp4
78.5 MB
11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7.mp4
77.9 MB
10 - Metaparameters (activations, optimizers)/011 Activation functions comparison.mp4
77.5 MB
08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say.mp4
76.7 MB
07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop).mp4
76.7 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning.mp4
76.3 MB
03 - Concepts in deep learning/002 How models learn.mp4
76.3 MB
13 - Measuring model performance/002 Accuracy, precision, recall, F1.mp4
76.1 MB
07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units.mp4
74.6 MB
30 - Python intro Flow control/009 Broadcasting in numpy.mp4
74.5 MB
07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs.mp4
74.3 MB
18 - Convolution and transformations/002 Feature maps and convolution kernels.mp4
73.8 MB
25 - Ethics of deep learning/005 Accountability and making ethical AI.mp4
73.5 MB
05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding.mp4
73.1 MB
15 - Weight inits and investigations/001 Explanation of weight matrix sizes.mp4
72.3 MB
06 - Gradient descent/001 Overview of gradient descent.mp4
71.8 MB
22 - Style transfer/003 The style transfer algorithm.mp4
70.6 MB
06 - Gradient descent/002 What about local minima.mp4
70.3 MB
18 - Convolution and transformations/004 Convolution parameters (stride, padding).mp4
70.2 MB
30 - Python intro Flow control/001 If-else statements.mp4
70.0 MB
22 - Style transfer/002 The Gram matrix (feature activation covariance).mp4
69.7 MB
25 - Ethics of deep learning/003 Some other possible ethical scenarios.mp4
69.5 MB
29 - Python intro Functions/006 Global and local variable scopes.mp4
69.2 MB
25 - Ethics of deep learning/001 Will AI save us or destroy us.mp4
69.1 MB
03 - Concepts in deep learning/001 What is an artificial neural network.mp4
68.6 MB
10 - Metaparameters (activations, optimizers)/005 The importance of data normalization.mp4
67.8 MB
10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants.mp4
67.1 MB
29 - Python intro Functions/002 Python libraries (numpy).mp4
66.5 MB
23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST.mp4
65.8 MB
09 - Regularization/009 Training in mini-batches.mp4
65.1 MB
10 - Metaparameters (activations, optimizers)/018 SGD with momentum.mp4
65.1 MB
10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice.mp4
64.8 MB
10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.mp4
64.7 MB
23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR.mp4
63.7 MB
08 - Overfitting and cross-validation/008 Cross-validation on regression.mp4
63.3 MB
11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST.mp4
63.1 MB
09 - Regularization/011 The importance of equal batch sizes.mp4
63.0 MB
10 - Metaparameters (activations, optimizers)/004 Data normalization.mp4
62.7 MB
31 - Python intro Text and plots/005 Seaborn.mp4
62.6 MB
18 - Convolution and transformations/006 CodeChallenge Choose the parameters.mp4
61.6 MB
30 - Python intro Flow control/004 Enumerate and zip.mp4
61.4 MB
07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet.mp4
61.4 MB
19 - Understand and design CNNs/003 CNN on shifted MNIST.mp4
61.2 MB
19 - Understand and design CNNs/001 The canonical CNN architecture.mp4
58.5 MB
12 - More on data/009 Save and load trained models.mp4
58.4 MB
05 - Math, numpy, PyTorch/019 Derivatives product and chain rules.mp4
58.3 MB
18 - Convolution and transformations/010 To pool or to stride.mp4
58.2 MB
19 - Understand and design CNNs/014 CodeChallenge How low can you go.mp4
58.0 MB
27 - Python intro Data types/004 Lists (1 of 2).mp4
57.7 MB
01 - Introduction/001 How to learn from this course.mp4
57.6 MB
23 - Generative adversarial networks/006 CNN GAN with FMNIST.mp4
57.2 MB
01 - Introduction/002 Using Udemy like a pro.mp4
57.0 MB
12 - More on data/004 What to do about unbalanced designs.mp4
56.8 MB
09 - Regularization/005 Dropout example 2.mp4
56.5 MB
31 - Python intro Text and plots/002 Plotting dots and lines.mp4
56.5 MB
22 - Style transfer/005 CodeChallenge Style transfer with AlexNet.mp4
56.1 MB
23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers.mp4
55.6 MB
10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization.mp4
55.6 MB
17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU.mp4
55.6 MB
25 - Ethics of deep learning/002 Example case studies.mp4
55.5 MB
07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop).mp4
55.5 MB
13 - Measuring model performance/003 APRF in code.mp4
54.3 MB
07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class.mp4
53.9 MB
28 - Python intro Indexing, slicing/001 Indexing.mp4
53.6 MB
05 - Math, numpy, PyTorch/003 Spectral theories in mathematics.mp4
53.5 MB
27 - Python intro Data types/008 Dictionaries.mp4
53.1 MB
14 - FFN milestone projects/003 Project 2 Predicting heart disease.mp4
53.1 MB
07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems.mp4
52.8 MB
05 - Math, numpy, PyTorch/007 OMG it's the dot product!.mp4
52.5 MB
10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something.mp4
52.2 MB
11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem.mp4
51.6 MB
16 - Autoencoders/001 What are autoencoders and what do they do.mp4
51.4 MB
29 - Python intro Functions/004 Getting help on functions.mp4
51.0 MB
14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine.mp4
50.9 MB
07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost).mp4
50.8 MB
28 - Python intro Indexing, slicing/002 Slicing.mp4
50.8 MB
20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10.mp4
50.7 MB
27 - Python intro Data types/005 Lists (2 of 2).mp4
49.0 MB
11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST.mp4
48.5 MB
02 - Download all course materials/001 Downloading and using the code.mp4
47.9 MB
05 - Math, numpy, PyTorch/018 Derivatives find minima.mp4
47.7 MB
14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation.mp4
47.6 MB
13 - Measuring model performance/008 Better performance in test than train.mp4
47.0 MB
05 - Math, numpy, PyTorch/010 Logarithms.mp4
46.0 MB
12 - More on data/008 Getting data into colab.mp4
45.9 MB
26 - Where to go from here/001 How to learn topic _X_ in deep learning.mp4
44.1 MB
12 - More on data/011 Where to find online datasets.mp4
43.7 MB
10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties.mp4
43.4 MB
21 - Transfer learning/004 Famous CNN architectures.mp4
43.3 MB
11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images.mp4
42.8 MB
22 - Style transfer/001 What is style transfer and how does it work.mp4
42.5 MB
13 - Measuring model performance/001 Two perspectives of the world.mp4
42.0 MB
06 - Gradient descent/006 CodeChallenge 2D gradient ascent.mp4
41.3 MB
09 - Regularization/002 train() and eval() modes.mp4
40.2 MB
05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers.mp4
39.9 MB
05 - Math, numpy, PyTorch/006 Vector and matrix transpose.mp4
39.5 MB
27 - Python intro Data types/006 Tuples.mp4
37.5 MB
03 - Concepts in deep learning/003 The role of DL in science and knowledge.mp4
36.4 MB
20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder.mp4
35.0 MB
05 - Math, numpy, PyTorch/005 Converting reality to numbers.mp4
34.8 MB
30 - Python intro Flow control/005 Continue.mp4
34.6 MB
10 - Metaparameters (activations, optimizers)/001 What are metaparameters.mp4
34.3 MB
08 - Overfitting and cross-validation/003 Generalization.mp4
34.0 MB
06 - Gradient descent/009 Vanishing and exploding gradients.mp4
31.7 MB
29 - Python intro Functions/001 Inputs and outputs.mp4
30.9 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings.mp4
30.4 MB
19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians.mp4
30.0 MB
15 - Weight inits and investigations/010 Use default inits or apply your own.mp4
29.4 MB
07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist.mp4
27.7 MB
20 - CNN milestone projects/004 Project 3 FMNIST.mp4
27.7 MB
11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks.mp4
26.8 MB
13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups.mp4
26.3 MB
29 - Python intro Functions/007 Copies and referents of variables.mp4
24.9 MB
04 - About the Python tutorial/001 Should you watch the Python tutorial.mp4
24.9 MB
27 - Python intro Data types/001 How to learn from the Python tutorial.mp4
23.0 MB
19 - Understand and design CNNs/016 So many possibilities! How to create a CNN.mp4
22.1 MB
21 - Transfer learning/006 CodeChallenge VGG-16.mp4
21.3 MB
31 - Python intro Text and plots/007 Export plots in low and high resolution.mp4
18.0 MB
05 - Math, numpy, PyTorch/002 Introduction to this section.mp4
11.7 MB
02 - Download all course materials/002 My policy on code-sharing.mp4
10.7 MB
06 - Gradient descent/010 Tangent Notebook revision history.mp4
10.4 MB
02 - Download all course materials/001 DUDL-PythonCode.zip
676.7 kB
19 - Understand and design CNNs/005 Examine feature map activations_en.srt
39.9 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation_en.srt
38.5 kB
19 - Understand and design CNNs/002 CNN to classify MNIST digits_en.srt
37.5 kB
07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset)_en.srt
37.0 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum_en.srt
36.9 kB
07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison_en.srt
35.7 kB
19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition)_en.srt
35.6 kB
07 - ANNs (Artificial Neural Networks)/006 ANN for regression_en.srt
35.3 kB
16 - Autoencoders/006 Autoencoder with tied weights_en.srt
34.3 kB
19 - Understand and design CNNs/004 Classify Gaussian blurs_en.srt
33.8 kB
07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties_en.srt
33.5 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM_en.srt
32.9 kB
09 - Regularization/004 Dropout regularization in practice_en.srt
32.9 kB
11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits_en.srt
32.4 kB
15 - Weight inits and investigations/009 Learning-related changes in weights_en.srt
32.3 kB
18 - Convolution and transformations/001 Convolution concepts_en.srt
31.9 kB
22 - Style transfer/004 Transferring the screaming bathtub_en.srt
31.8 kB
23 - Generative adversarial networks/002 Linear GAN with MNIST_en.srt
31.5 kB
16 - Autoencoders/005 The latent code of MNIST_en.srt
31.2 kB
09 - Regularization/003 Dropout regularization_en.srt
31.1 kB
07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth_en.srt
30.4 kB
29 - Python intro Functions/005 Creating functions_en.srt
30.4 kB
18 - Convolution and transformations/003 Convolution in code_en.srt
30.1 kB
08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn_en.srt
30.0 kB
19 - Understand and design CNNs/010 CodeChallenge Custom loss functions_en.srt
29.5 kB
07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN_en.srt
29.0 kB
12 - More on data/003 CodeChallenge unbalanced data_en.srt
28.9 kB
16 - Autoencoders/003 CodeChallenge How many units_en.srt
28.5 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences_en.srt
28.4 kB
21 - Transfer learning/007 Pretraining with autoencoders_en.srt
28.4 kB
08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader_en.srt
28.2 kB
12 - More on data/007 Data feature augmentation_en.srt
28.0 kB
07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes_en.srt
27.9 kB
07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture_en.srt
27.5 kB
30 - Python intro Flow control/008 while loops_en.srt
27.5 kB
05 - Math, numpy, PyTorch/009 Softmax_en.srt
27.4 kB
14 - FFN milestone projects/004 Project 2 My solution_en.srt
27.3 kB
27 - Python intro Data types/007 Booleans_en.srt
27.3 kB
10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum)_en.srt
27.0 kB
27 - Python intro Data types/002 Variables_en.srt
26.8 kB
06 - Gradient descent/007 Parametric experiments on g.d_en.srt
26.8 kB
09 - Regularization/006 Weight regularization (L1L2) math_en.srt
26.7 kB
31 - Python intro Text and plots/004 Making the graphs look nicer_en.srt
26.6 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch_en.srt
26.6 kB
10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch_en.srt
26.5 kB
27 - Python intro Data types/003 Math and printing_en.srt
26.4 kB
18 - Convolution and transformations/008 Maxmean pooling_en.srt
26.3 kB
29 - Python intro Functions/008 Classes and object-oriented programming_en.srt
26.2 kB
10 - Metaparameters (activations, optimizers)/009 Activation functions_en.srt
26.1 kB
18 - Convolution and transformations/012 Creating and using custom DataLoaders_en.srt
26.1 kB
12 - More on data/001 Anatomy of a torch dataset and dataloader_en.srt
26.0 kB
21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model_en.srt
25.5 kB
10 - Metaparameters (activations, optimizers)/002 The wine quality dataset_en.srt
25.4 kB
07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters_en.srt
25.3 kB
31 - Python intro Text and plots/006 Images_en.srt
25.3 kB
30 - Python intro Flow control/006 Initializing variables_en.srt
25.2 kB
16 - Autoencoders/004 AEs for occlusion_en.srt
25.1 kB
26 - Where to go from here/002 How to read academic DL papers_en.srt
25.1 kB
05 - Math, numpy, PyTorch/011 Entropy and cross-entropy_en.srt
25.0 kB
30 - Python intro Flow control/010 Function error checking and handling_en.srt
25.0 kB
30 - Python intro Flow control/003 For loops_en.srt
24.9 kB
19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters_en.srt
24.7 kB
10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar_en.srt
24.6 kB
08 - Overfitting and cross-validation/002 Cross-validation_en.srt
24.6 kB
21 - Transfer learning/001 Transfer learning What, why, and when_en.srt
24.4 kB
06 - Gradient descent/003 Gradient descent in 1D_en.srt
24.3 kB
15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming_en.srt
24.3 kB
21 - Transfer learning/005 Transfer learning with ResNet-18_en.srt
24.2 kB
11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization_en.srt
24.1 kB
19 - Understand and design CNNs/008 Do autoencoders clean Gaussians_en.srt
24.1 kB
05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials_en.srt
24.0 kB
31 - Python intro Text and plots/001 Printing and string interpolation_en.srt
24.0 kB
10 - Metaparameters (activations, optimizers)/014 Loss functions_en.srt
23.9 kB
03 - Concepts in deep learning/005 Are artificial neurons like biological neurons_en.srt
23.8 kB
12 - More on data/005 Data oversampling in MNIST_en.srt
23.8 kB
18 - Convolution and transformations/011 Image transforms_en.srt
23.6 kB
15 - Weight inits and investigations/002 A surprising demo of weight initializations_en.srt
23.6 kB
23 - Generative adversarial networks/001 GAN What, why, and how_en.srt
23.2 kB
06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate_en.srt
23.1 kB
12 - More on data/002 Data size and network size_en.srt
23.1 kB
03 - Concepts in deep learning/003 The role of DL in science and knowledge_en.srt
23.0 kB
19 - Understand and design CNNs/011 Discover the Gaussian parameters_en.srt
22.9 kB
31 - Python intro Text and plots/003 Subplot geometry_en.srt
22.8 kB
10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset_en.srt
22.8 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings_en.srt
22.6 kB
30 - Python intro Flow control/002 If-else statements, part 2_en.srt
22.6 kB
16 - Autoencoders/002 Denoising MNIST_en.srt
22.5 kB
05 - Math, numpy, PyTorch/013 Mean and variance_en.srt
22.3 kB
15 - Weight inits and investigations/005 Xavier and Kaiming initializations_en.srt
22.2 kB
17 - Running models on a GPU/001 What is a GPU and why use it_en.srt
22.1 kB
07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop)_en.srt
21.9 kB
23 - Generative adversarial networks/004 CNN GAN with Gaussians_en.srt
21.8 kB
10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam)_en.srt
21.8 kB
11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning_en.srt
21.7 kB
12 - More on data/010 Save the best-performing model_en.srt
21.7 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work_en.srt
21.5 kB
30 - Python intro Flow control/007 Single-line loops (list comprehension)_en.srt
21.4 kB
30 - Python intro Flow control/001 If-else statements_en.srt
21.3 kB
06 - Gradient descent/005 Gradient descent in 2D_en.srt
21.2 kB
03 - Concepts in deep learning/001 What is an artificial neural network_en.srt
21.0 kB
30 - Python intro Flow control/009 Broadcasting in numpy_en.srt
21.0 kB
06 - Gradient descent/001 Overview of gradient descent_en.srt
20.6 kB
05 - Math, numpy, PyTorch/008 Matrix multiplication_en.srt
20.3 kB
21 - Transfer learning/003 CodeChallenge letters to numbers_en.srt
20.2 kB
27 - Python intro Data types/004 Lists (1 of 2)_en.srt
20.1 kB
10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs_en.srt
20.0 kB
29 - Python intro Functions/003 Python libraries (pandas)_en.srt
20.0 kB
29 - Python intro Functions/002 Python libraries (numpy)_en.srt
19.7 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes_en.srt
19.7 kB
18 - Convolution and transformations/007 Transpose convolution_en.srt
19.6 kB
10 - Metaparameters (activations, optimizers)/004 Data normalization_en.srt
19.4 kB
19 - Understand and design CNNs/015 CodeChallenge Varying number of channels_en.srt
19.4 kB
29 - Python intro Functions/006 Global and local variable scopes_en.srt
19.4 kB
18 - Convolution and transformations/009 Pooling in PyTorch_en.srt
19.4 kB
05 - Math, numpy, PyTorch/016 The t-test_en.srt
19.1 kB
07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs_en.srt
19.1 kB
15 - Weight inits and investigations/008 Freezing weights during learning_en.srt
19.0 kB
03 - Concepts in deep learning/004 Running experiments to understand DL_en.srt
19.0 kB
13 - Measuring model performance/004 APRF example 1 wine quality_en.srt
19.0 kB
07 - ANNs (Artificial Neural Networks)/017 Defining models using sequential vs. class_en.srt
18.9 kB
09 - Regularization/001 Regularization Concept and methods_en.srt
18.8 kB
09 - Regularization/007 L2 regularization in practice_en.srt
18.7 kB
18 - Convolution and transformations/005 The Conv2 class in PyTorch_en.srt
18.6 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning_en.srt
18.6 kB
03 - Concepts in deep learning/002 How models learn_en.srt
18.5 kB
10 - Metaparameters (activations, optimizers)/006 Batch normalization_en.srt
18.4 kB
12 - More on data/006 Data noise augmentation (with devset+test)_en.srt
18.4 kB
08 - Overfitting and cross-validation/004 Cross-validation -- manual separation_en.srt
18.3 kB
15 - Weight inits and investigations/004 CodeChallenge Weight variance inits_en.srt
18.2 kB
11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset_en.srt
18.1 kB
08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say_en.srt
18.1 kB
15 - Weight inits and investigations/003 Theory Why and how to initialize weights_en.srt
18.0 kB
05 - Math, numpy, PyTorch/012 Minmax and argminargmax_en.srt
17.9 kB
09 - Regularization/012 CodeChallenge Effects of mini-batch size_en.srt
17.8 kB
18 - Convolution and transformations/004 Convolution parameters (stride, padding)_en.srt
17.8 kB
28 - Python intro Indexing, slicing/001 Indexing_en.srt
17.8 kB
13 - Measuring model performance/002 Accuracy, precision, recall, F1_en.srt
17.7 kB
15 - Weight inits and investigations/007 CodeChallenge Identically random weights_en.srt
17.7 kB
28 - Python intro Indexing, slicing/002 Slicing_en.srt
17.7 kB
10 - Metaparameters (activations, optimizers)/023 Learning rate decay_en.srt
17.6 kB
07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!_en.srt
17.5 kB
11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth_en.srt
17.5 kB
31 - Python intro Text and plots/002 Plotting dots and lines_en.srt
17.4 kB
09 - Regularization/008 L1 regularization in practice_en.srt
17.2 kB
15 - Weight inits and investigations/001 Explanation of weight matrix sizes_en.srt
17.0 kB
06 - Gradient descent/002 What about local minima_en.srt
16.9 kB
13 - Measuring model performance/005 APRF example 2 MNIST_en.srt
16.9 kB
20 - CNN milestone projects/002 Project 1 My solution_en.srt
16.9 kB
27 - Python intro Data types/008 Dictionaries_en.srt
16.8 kB
10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch_en.srt
16.7 kB
16 - Autoencoders/001 What are autoencoders and what do they do_en.srt
16.7 kB
14 - FFN milestone projects/002 Project 1 My solution_en.srt
16.7 kB
09 - Regularization/009 Training in mini-batches_en.srt
16.6 kB
22 - Style transfer/002 The Gram matrix (feature activation covariance)_en.srt
16.6 kB
25 - Ethics of deep learning/005 Accountability and making ethical AI_en.srt
16.5 kB
10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters_en.srt
16.5 kB
19 - Understand and design CNNs/007 CodeChallenge How wide the FC_en.srt
16.2 kB
11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST_en.srt
16.2 kB
05 - Math, numpy, PyTorch/014 Random sampling and sampling variability_en.srt
16.1 kB
30 - Python intro Flow control/004 Enumerate and zip_en.srt
15.8 kB
06 - Gradient descent/004 CodeChallenge unfortunate starting value_en.srt
15.7 kB
11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7_en.srt
15.5 kB
19 - Understand and design CNNs/001 The canonical CNN architecture_en.srt
15.5 kB
31 - Python intro Text and plots/005 Seaborn_en.srt
15.5 kB
09 - Regularization/010 Batch training in action_en.srt
15.4 kB
07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop)_en.srt
15.1 kB
25 - Ethics of deep learning/003 Some other possible ethical scenarios_en.srt
15.0 kB
22 - Style transfer/003 The style transfer algorithm_en.srt
14.9 kB
25 - Ethics of deep learning/004 Will deep learning take our jobs_en.srt
14.7 kB
17 - Running models on a GPU/002 Implementation_en.srt
14.6 kB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs_en.vtt
14.6 kB
10 - Metaparameters (activations, optimizers)/020 Optimizers comparison_en.srt
14.4 kB
07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units_en.srt
14.4 kB
21 - Transfer learning/002 Transfer learning MNIST - FMNIST_en.srt
14.4 kB
27 - Python intro Data types/005 Lists (2 of 2)_en.srt
14.3 kB
14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation_en.srt
14.2 kB
25 - Ethics of deep learning/001 Will AI save us or destroy us_en.srt
14.2 kB
18 - Convolution and transformations/010 To pool or to stride_en.srt
14.1 kB
13 - Measuring model performance/007 Computation time_en.srt
14.1 kB
19 - Understand and design CNNs/013 Dropout in CNNs_en.srt
14.0 kB
19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians_en.srt
13.8 kB
18 - Convolution and transformations/002 Feature maps and convolution kernels_en.srt
13.8 kB
05 - Math, numpy, PyTorch/007 OMG it's the dot product!_en.srt
13.8 kB
07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost)_en.srt
13.7 kB
23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST_en.srt
13.7 kB
08 - Overfitting and cross-validation/007 Splitting data into train, devset, test_en.srt
13.6 kB
10 - Metaparameters (activations, optimizers)/005 The importance of data normalization_en.srt
13.6 kB
05 - Math, numpy, PyTorch/003 Spectral theories in mathematics_en.srt
13.4 kB
10 - Metaparameters (activations, optimizers)/011 Activation functions comparison_en.srt
13.4 kB
05 - Math, numpy, PyTorch/019 Derivatives product and chain rules_en.srt
13.4 kB
01 - Introduction/001 How to learn from this course_en.srt
12.8 kB
13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups_en.srt
12.5 kB
07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet_en.srt
12.2 kB
26 - Where to go from here/001 How to learn topic _X_ in deep learning_en.srt
12.2 kB
01 - Introduction/002 Using Udemy like a pro_en.srt
12.1 kB
07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems_en.srt
12.0 kB
05 - Math, numpy, PyTorch/018 Derivatives find minima_en.srt
12.0 kB
19 - Understand and design CNNs/003 CNN on shifted MNIST_en.srt
11.9 kB
27 - Python intro Data types/006 Tuples_en.srt
11.8 kB
13 - Measuring model performance/008 Better performance in test than train_en.srt
11.8 kB
08 - Overfitting and cross-validation/008 Cross-validation on regression_en.srt
11.8 kB
14 - FFN milestone projects/006 Project 3 My solution_en.srt
11.7 kB
05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding_en.srt
11.6 kB
11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem_en.srt
11.5 kB
23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR_en.srt
11.5 kB
10 - Metaparameters (activations, optimizers)/018 SGD with momentum_en.srt
11.4 kB
05 - Math, numpy, PyTorch/010 Logarithms_en.srt
11.3 kB
31 - Python intro Text and plots/007 Export plots in low and high resolution_en.srt
11.2 kB
10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants_en.srt
11.1 kB
11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST_en.srt
11.1 kB
12 - More on data/004 What to do about unbalanced designs_en.srt
11.0 kB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs_en.srt
11.0 kB
29 - Python intro Functions/004 Getting help on functions_en.srt
10.9 kB
10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice_en.srt
10.9 kB
14 - FFN milestone projects/003 Project 2 Predicting heart disease_en.srt
10.8 kB
14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine_en.srt
10.6 kB
05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers_en.srt
10.5 kB
20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10_en.srt
10.4 kB
29 - Python intro Functions/001 Inputs and outputs_en.srt
10.4 kB
22 - Style transfer/005 CodeChallenge Style transfer with AlexNet_en.srt
10.3 kB
10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization_en.srt
10.2 kB
13 - Measuring model performance/001 Two perspectives of the world_en.srt
10.2 kB
09 - Regularization/002 train() and eval() modes_en.srt
10.1 kB
18 - Convolution and transformations/006 CodeChallenge Choose the parameters_en.srt
10.0 kB
30 - Python intro Flow control/005 Continue_en.srt
9.9 kB
05 - Math, numpy, PyTorch/006 Vector and matrix transpose_en.srt
9.9 kB
19 - Understand and design CNNs/014 CodeChallenge How low can you go_en.srt
9.8 kB
11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST_en.srt
9.8 kB
17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU_en.srt
9.7 kB
07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class_en.srt
9.6 kB
05 - Math, numpy, PyTorch/005 Converting reality to numbers_en.srt
9.4 kB
09 - Regularization/011 The importance of equal batch sizes_en.srt
9.3 kB
02 - Download all course materials/001 Downloading and using the code_en.srt
9.3 kB
13 - Measuring model performance/003 APRF in code_en.srt
9.2 kB
10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something_en.srt
9.2 kB
23 - Generative adversarial networks/006 CNN GAN with FMNIST_en.srt
9.1 kB
07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist_en.srt
9.1 kB
09 - Regularization/005 Dropout example 2_en.srt
9.0 kB
25 - Ethics of deep learning/002 Example case studies_en.srt
9.0 kB
06 - Gradient descent/009 Vanishing and exploding gradients_en.srt
8.9 kB
12 - More on data/009 Save and load trained models_en.srt
8.8 kB
23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers_en.srt
8.8 kB
12 - More on data/008 Getting data into colab_en.srt
8.7 kB
08 - Overfitting and cross-validation/003 Generalization_en.srt
8.7 kB
21 - Transfer learning/004 Famous CNN architectures_en.srt
8.6 kB
12 - More on data/011 Where to find online datasets_en.srt
8.1 kB
06 - Gradient descent/006 CodeChallenge 2D gradient ascent_en.srt
7.4 kB
10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties_en.srt
7.4 kB
11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images_en.srt
7.3 kB
10 - Metaparameters (activations, optimizers)/001 What are metaparameters_en.srt
7.3 kB
29 - Python intro Functions/007 Copies and referents of variables_en.srt
7.1 kB
20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder_en.srt
6.9 kB
11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks_en.srt
6.9 kB
19 - Understand and design CNNs/016 So many possibilities! How to create a CNN_en.srt
6.4 kB
15 - Weight inits and investigations/010 Use default inits or apply your own_en.srt
6.3 kB
22 - Style transfer/001 What is style transfer and how does it work_en.srt
6.3 kB
04 - About the Python tutorial/001 Should you watch the Python tutorial_en.srt
6.1 kB
20 - CNN milestone projects/004 Project 3 FMNIST_en.srt
5.1 kB
21 - Transfer learning/006 CodeChallenge VGG-16_en.srt
5.0 kB
27 - Python intro Data types/001 How to learn from the Python tutorial_en.srt
4.8 kB
32 - Bonus section/001 Bonus content.html
3.7 kB
05 - Math, numpy, PyTorch/002 Introduction to this section_en.srt
2.9 kB
06 - Gradient descent/010 Tangent Notebook revision history_en.srt
2.7 kB
02 - Download all course materials/002 My policy on code-sharing_en.srt
2.5 kB
05 - Math, numpy, PyTorch/001 PyTorch or TensorFlow.html
1.1 kB
07 - ANNs (Artificial Neural Networks)/020 Diversity of ANN visual representations.html
517 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!