搜索
[Udemy] Automatic Number Plate Recognition, OCR Web App in Python (04.2021)
磁力链接/BT种子名称
[Udemy] Automatic Number Plate Recognition, OCR Web App in Python (04.2021)
磁力链接/BT种子简介
种子哈希:
713f6373aac8fee0ea0abd8ef657f021c2739b3e
文件大小:
2.06G
已经下载:
7684
次
下载速度:
极快
收录时间:
2021-09-21
最近下载:
2025-10-10
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:713F6373AAC8FEE0EA0ABD8EF657F021C2739B3E
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
推特sin
cospuri 0429
老狐狸 2024
alisa amore
警
抖音网红2025
草榴
电锯惊魂h版
苏畅
钻石贴
剧情新作
the young like
玩偶
国产合集[小学
厠
麻豆 大屌
abp-524
短剧 反击
万历明君
无水印艳照门
めんようじゃん
希島
91抖阴地址 k 4 p 7 . c o m 看片同城约炮专属
nagitsukino
公然
高清原版无水印
清水あいり
sm 任务
vika系列
[中国翻訳
文件列表
1. Introduction/2.1 Project_Files.zip
496.4 MB
8. Number Plate Web App/6. Integrate Deep Learning Object Detection Model.mp4
148.6 MB
3. Data Processing/3. Data Preprocessing.mp4
87.4 MB
2. Labeling/5. XML to CSV.mp4
85.8 MB
8. Number Plate Web App/8. Display Output in HTML Page.mp4
82.0 MB
5. Pipeline Object Detection Model/1. Make Predictions.mp4
78.6 MB
8. Number Plate Web App/9. Display Output in HTML Page part 2.mp4
74.7 MB
6. Optical Character Recognition (OCR)/3. Exrtract Number Plate text from Image.mp4
70.6 MB
8. Number Plate Web App/7. Integrate Number Plate Detection and OCR to Flask App.mp4
70.1 MB
3. Data Processing/1. Read Data.mp4
64.1 MB
8. Number Plate Web App/5. HTTP Method Upload File in Flask.mp4
59.4 MB
5. Pipeline Object Detection Model/5. Create Pipeline.mp4
58.1 MB
3. Data Processing/2. Verify Labeled Data.mp4
51.0 MB
6. Optical Character Recognition (OCR)/1. Install Tesseract.mp4
50.1 MB
7. Flask App/3. Render HTML Template.mp4
50.0 MB
4. Deep Learning for Object Detection/2. InceptionResnet V2 model building.mp4
47.2 MB
2. Labeling/3. Install Dependencies.mp4
42.3 MB
5. Pipeline Object Detection Model/4. Bounding Box.mp4
41.0 MB
7. Flask App/1. Install Visual Studio Code.mp4
40.7 MB
7. Flask App/2. First Flask App.mp4
40.1 MB
2. Labeling/4. Label Images.mp4
33.6 MB
5. Pipeline Object Detection Model/3. De-normalize the Output.mp4
32.1 MB
5. Pipeline Object Detection Model/2. Make Predictions part2.mp4
31.5 MB
4. Deep Learning for Object Detection/8. Tensorboard.mp4
29.6 MB
3. Data Processing/4. Split train and test set.mp4
28.7 MB
8. Number Plate Web App/1. Create Web App.mp4
27.0 MB
7. Flask App/4. Import Boostrap.mp4
26.9 MB
4. Deep Learning for Object Detection/6. InceptionResnet V2 Training - Part 2.mp4
25.8 MB
4. Deep Learning for Object Detection/7. Save Deep Learning Model.mp4
25.2 MB
4. Deep Learning for Object Detection/4. Compiling Model.mp4
25.1 MB
8. Number Plate Web App/4. Upload Form in HTML.mp4
23.9 MB
2. Labeling/2. Download Image Annotation Tool.mp4
23.9 MB
8. Number Plate Web App/3. Template Inheritance.mp4
23.3 MB
4. Deep Learning for Object Detection/5. InceptionResnet V2 Training.mp4
22.5 MB
2. Labeling/1. Get the Data.mp4
19.5 MB
4. Deep Learning for Object Detection/1. Get Transfer Learning from TensorFlow 2.x.mp4
18.3 MB
4. Deep Learning for Object Detection/3. Defining Inputs and Outputs.mp4
15.1 MB
6. Optical Character Recognition (OCR)/2. Install Pytesseract.mp4
13.6 MB
8. Number Plate Web App/2. Footer.mp4
13.4 MB
1. Introduction/1. Project Architecture.mp4
13.1 MB
2. Labeling/2.1 labelImg-master.zip
6.6 MB
8. Number Plate Web App/6. Integrate Deep Learning Object Detection Model.srt
15.7 kB
5. Pipeline Object Detection Model/1. Make Predictions.srt
11.1 kB
3. Data Processing/3. Data Preprocessing.srt
10.9 kB
8. Number Plate Web App/8. Display Output in HTML Page.srt
9.7 kB
8. Number Plate Web App/5. HTTP Method Upload File in Flask.srt
8.8 kB
3. Data Processing/1. Read Data.srt
8.4 kB
7. Flask App/3. Render HTML Template.srt
8.1 kB
8. Number Plate Web App/9. Display Output in HTML Page part 2.srt
7.5 kB
4. Deep Learning for Object Detection/2. InceptionResnet V2 model building.srt
7.4 kB
6. Optical Character Recognition (OCR)/3. Exrtract Number Plate text from Image.srt
7.3 kB
3. Data Processing/2. Verify Labeled Data.srt
6.8 kB
2. Labeling/5. XML to CSV.srt
6.8 kB
7. Flask App/2. First Flask App.srt
6.6 kB
8. Number Plate Web App/7. Integrate Number Plate Detection and OCR to Flask App.srt
6.2 kB
5. Pipeline Object Detection Model/5. Create Pipeline.srt
5.9 kB
5. Pipeline Object Detection Model/4. Bounding Box.srt
5.6 kB
6. Optical Character Recognition (OCR)/1. Install Tesseract.srt
5.1 kB
5. Pipeline Object Detection Model/2. Make Predictions part2.srt
5.0 kB
4. Deep Learning for Object Detection/8. Tensorboard.srt
4.9 kB
7. Flask App/1. Install Visual Studio Code.srt
4.7 kB
5. Pipeline Object Detection Model/3. De-normalize the Output.srt
4.2 kB
3. Data Processing/4. Split train and test set.srt
4.1 kB
8. Number Plate Web App/4. Upload Form in HTML.srt
3.9 kB
4. Deep Learning for Object Detection/5. InceptionResnet V2 Training.srt
3.9 kB
8. Number Plate Web App/1. Create Web App.srt
3.9 kB
1. Introduction/1. Project Architecture.srt
3.4 kB
8. Number Plate Web App/3. Template Inheritance.srt
3.4 kB
7. Flask App/4. Import Boostrap.srt
3.3 kB
4. Deep Learning for Object Detection/1. Get Transfer Learning from TensorFlow 2.x.srt
3.1 kB
4. Deep Learning for Object Detection/7. Save Deep Learning Model.srt
2.7 kB
4. Deep Learning for Object Detection/4. Compiling Model.srt
2.7 kB
4. Deep Learning for Object Detection/6. InceptionResnet V2 Training - Part 2.srt
2.7 kB
8. Number Plate Web App/2. Footer.srt
2.3 kB
2. Labeling/4. Label Images.srt
1.9 kB
6. Optical Character Recognition (OCR)/2. Install Pytesseract.srt
1.8 kB
4. Deep Learning for Object Detection/3. Defining Inputs and Outputs.srt
1.7 kB
2. Labeling/2. Download Image Annotation Tool.srt
1.7 kB
2. Labeling/1. Get the Data.srt
1.2 kB
2. Labeling/3. Install Dependencies.srt
1.2 kB
9. BONUS/1. Bonus Lecture.html
685 Bytes
1. Introduction/2. Download the Resources.html
113 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!