搜索
Udemy - Modern Deep Learning in Python [Lazy Programmer Inc.]
磁力链接/BT种子名称
Udemy - Modern Deep Learning in Python [Lazy Programmer Inc.]
磁力链接/BT种子简介
种子哈希:
5b8edcae8a913f5782e0ee2336208c67c78c5e7c
文件大小:
1.56G
已经下载:
1338
次
下载速度:
极快
收录时间:
2024-02-11
最近下载:
2025-09-30
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:5B8EDCAE8A913F5782E0EE2336208C67C78C5E7C
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
2025校花
胡八一探花 人瘦胸大
hmn-663
fc2-ppv-4597399
裸體
fc2-ppv-4091847
可盐可甜
田丽
ceasonshot99
为艺术献身的10位韩国女星
白丝足射
milfuckd lady lorreign
teens8k
archive
奶牛
欲望酒店
蛋原胶白
milla.azul
fc2-ppv-4770664
女友小鱼
mpg-0032
mumu模拟器更换机型
永瀬ゆい
柴静 看见
bonnielocket
麻豆
龟责
气质
李思钰
royd-108.
文件列表
17. Appendix/4. Windows-Focused Environment Setup 2018.mp4
195.4 MB
15. PyTorch/1. PyTorch Basics.mp4
122.5 MB
17. Appendix/10. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
17. Appendix/2. What's the difference between neural networks and deep learning.mp4
47.3 MB
11. Project Facial Expression Recognition/5. Class-Based ANN in Theano.mp4
46.1 MB
17. Appendix/5. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.1 MB
17. Appendix/9. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
14. Keras/3. Keras Functional API.mp4
40.5 MB
17. Appendix/14. What order should I take your courses in (part 2).mp4
39.4 MB
11. Project Facial Expression Recognition/6. Class-Based ANN in TensorFlow.mp4
39.2 MB
15. PyTorch/3. PyTorch Batch Norm.mp4
35.5 MB
15. PyTorch/2. PyTorch Dropout.mp4
34.3 MB
17. Appendix/13. What order should I take your courses in (part 1).mp4
30.8 MB
9. GPU Speedup, Homework, and Other Misc Topics/1. Setting up a GPU Instance on Amazon Web Services.mp4
26.9 MB
17. Appendix/7. How to Code by Yourself (part 1).mp4
25.7 MB
8. TensorFlow/2. Building a neural network in TensorFlow.mp4
25.0 MB
8. TensorFlow/3. What is a Session (And more).mp4
24.7 MB
2. Review/1. Review of Basic Concepts.mp4
24.5 MB
12. Modern Regularization Techniques/2. Dropout Regularization.mp4
23.8 MB
7. Theano/2. Building a neural network in Theano.mp4
22.8 MB
11. Project Facial Expression Recognition/2. Facial Expression Recognition Problem Description.mp4
22.5 MB
7. Theano/1. Theano Basics Variables, Functions, Expressions, Optimization.mp4
20.3 MB
4. Momentum and adaptive learning rates/6. Adam Optimization.mp4
20.3 MB
4. Momentum and adaptive learning rates/4. Variable and adaptive learning rates.mp4
19.8 MB
13. Batch Normalization/3. Batch Normalization Theory.mp4
19.5 MB
7. Theano/3. Is Theano Dead.mp4
18.7 MB
8. TensorFlow/1. TensorFlow Basics Variables, Functions, Expressions, Optimization.mp4
17.9 MB
13. Batch Normalization/7. Batch Normalization Theano (part 2).mp4
17.3 MB
13. Batch Normalization/5. Batch Normalization Tensorflow (part 2).mp4
15.6 MB
17. Appendix/8. How to Code by Yourself (part 2).mp4
15.5 MB
14. Keras/2. Keras in Code.mp4
15.5 MB
4. Momentum and adaptive learning rates/3. Momentum in Code.mp4
15.1 MB
1. Introduction and Outline/1. Outline - what did you learn previously, and what will you learn in this course.mp4
15.1 MB
3. Gradient Descent Full vs Batch vs Stochastic/2. Full vs Batch vs Stochastic Gradient Descent in code.mp4
14.7 MB
4. Momentum and adaptive learning rates/7. Adam in Code.mp4
14.6 MB
5. Choosing Hyperparameters/3. Grid Search in Code.mp4
14.4 MB
6. Weight Initialization/3. Weight Initialization.mp4
14.3 MB
11. Project Facial Expression Recognition/4. Utilities walkthrough.mp4
14.1 MB
17. Appendix/6. How to Succeed in this Course (Long Version).mp4
13.6 MB
14. Keras/1. Keras Discussion.mp4
11.8 MB
2. Review/2. Where to get the MNIST dataset and Establishing a Linear Benchmark.mp4
11.7 MB
4. Momentum and adaptive learning rates/5. Constant learning rate vs. RMSProp in Code.mp4
11.5 MB
4. Momentum and adaptive learning rates/1. Using Momentum to Speed Up Training.mp4
11.2 MB
4. Momentum and adaptive learning rates/2. Nesterov Momentum.mp4
11.2 MB
11. Project Facial Expression Recognition/3. The class imbalance problem.mp4
10.6 MB
6. Weight Initialization/2. Vanishing and Exploding Gradients.mp4
10.5 MB
11. Project Facial Expression Recognition/1. Facial Expression Recognition Project Introduction.mp4
10.3 MB
10. Transition to the 2nd Half of the Course/1. Transition to the 2nd Half of the Course.mp4
9.9 MB
13. Batch Normalization/4. Batch Normalization Tensorflow (part 1).mp4
9.9 MB
9. GPU Speedup, Homework, and Other Misc Topics/5. Theano vs. TensorFlow.mp4
9.6 MB
12. Modern Regularization Techniques/4. Noise Injection.mp4
9.1 MB
5. Choosing Hyperparameters/5. Random Search in Code.mp4
8.3 MB
17. Appendix/12. Python 2 vs Python 3.mp4
8.2 MB
17. Appendix/3. Manually Choosing Learning Rate and Regularization Penalty.mp4
8.1 MB
13. Batch Normalization/6. Batch Normalization Theano (part 1).mp4
8.0 MB
13. Batch Normalization/2. Exponentially-Smoothed Averages.mp4
7.7 MB
9. GPU Speedup, Homework, and Other Misc Topics/4. How to Improve your Theano and Tensorflow Skills.mp4
7.7 MB
12. Modern Regularization Techniques/3. Dropout Intuition.mp4
6.4 MB
1. Introduction and Outline/2. Where does this course fit into your deep learning studies.mp4
6.3 MB
3. Gradient Descent Full vs Batch vs Stochastic/1. What are full, batch, and stochastic gradient descent.mp4
6.1 MB
17. Appendix/1. What is the Appendix.mp4
5.7 MB
17. Appendix/11. How to Uncompress a .tar.gz file.mp4
5.7 MB
5. Choosing Hyperparameters/2. Sampling Logarithmically.mp4
5.5 MB
9. GPU Speedup, Homework, and Other Misc Topics/2. Can Big Data be used to Speed Up Backpropagation.mp4
5.5 MB
6. Weight Initialization/4. Local vs. Global Minima.mp4
5.4 MB
5. Choosing Hyperparameters/1. Hyperparameter Optimization Cross-validation, Grid Search, and Random Search.mp4
5.3 MB
9. GPU Speedup, Homework, and Other Misc Topics/3. Exercises and Concepts Still to be Covered.mp4
4.7 MB
12. Modern Regularization Techniques/1. Modern Regularization Techniques Section Introduction.mp4
4.5 MB
12. Modern Regularization Techniques/5. Modern Regularization Techniques Section Summary.mp4
4.1 MB
13. Batch Normalization/1. Batch Normalization Introduction.mp4
3.7 MB
13. Batch Normalization/8. Noise Perspective.mp4
3.3 MB
11. Project Facial Expression Recognition/7. Facial Expression Recognition Project Summary.mp4
3.0 MB
6. Weight Initialization/5. Weight Initialization Section Summary.mp4
2.8 MB
13. Batch Normalization/9. Batch Normalization Summary.mp4
2.7 MB
5. Choosing Hyperparameters/4. Modifying Grid Search.mp4
2.3 MB
6. Weight Initialization/1. Weight Initialization Section Introduction.mp4
1.6 MB
16. PyTorch, CNTK, and MXNet/1. PyTorch, CNTK, and MXNet.mp4
1.4 MB
.pad/1047629
1.0 MB
.pad/1047491
1.0 MB
.pad/1047068
1.0 MB
.pad/1046989
1.0 MB
.pad/1046672
1.0 MB
.pad/1046660
1.0 MB
.pad/1046301
1.0 MB
.pad/1046293
1.0 MB
.pad/1046163
1.0 MB
.pad/1045904
1.0 MB
.pad/1045892
1.0 MB
.pad/1045872
1.0 MB
.pad/1045843
1.0 MB
.pad/1045409
1.0 MB
.pad/1045217
1.0 MB
.pad/1045106
1.0 MB
.pad/1045011
1.0 MB
.pad/1044947
1.0 MB
.pad/1044826
1.0 MB
.pad/1044691
1.0 MB
.pad/1044628
1.0 MB
.pad/1044521
1.0 MB
.pad/1044455
1.0 MB
.pad/1044396
1.0 MB
.pad/1044287
1.0 MB
.pad/1044277
1.0 MB
.pad/1044207
1.0 MB
.pad/1043766
1.0 MB
.pad/1043658
1.0 MB
.pad/1043643
1.0 MB
.pad/1043432
1.0 MB
.pad/1043427
1.0 MB
.pad/1043213
1.0 MB
.pad/1043095
1.0 MB
.pad/1043059
1.0 MB
.pad/1043028
1.0 MB
.pad/1042955
1.0 MB
.pad/1042793
1.0 MB
.pad/1042752
1.0 MB
.pad/1042626
1.0 MB
.pad/1042607
1.0 MB
.pad/1042518
1.0 MB
.pad/1042513
1.0 MB
.pad/1042466
1.0 MB
.pad/1042277
1.0 MB
.pad/1041956
1.0 MB
.pad/1041660
1.0 MB
.pad/1041554
1.0 MB
.pad/1041459
1.0 MB
.pad/1041433
1.0 MB
.pad/1041377
1.0 MB
.pad/1041248
1.0 MB
.pad/1040923
1.0 MB
.pad/1040336
1.0 MB
.pad/1040230
1.0 MB
.pad/1039454
1.0 MB
.pad/1039251
1.0 MB
.pad/1038570
1.0 MB
.pad/1037005
1.0 MB
.pad/1036760
1.0 MB
.pad/1036673
1.0 MB
.pad/1036410
1.0 MB
.pad/1036062
1.0 MB
.pad/1035908
1.0 MB
.pad/1035875
1.0 MB
.pad/1035597
1.0 MB
.pad/1035407
1.0 MB
.pad/1035376
1.0 MB
.pad/1035055
1.0 MB
.pad/1034874
1.0 MB
.pad/1034144
1.0 MB
.pad/1033921
1.0 MB
.pad/1032182
1.0 MB
.pad/1032147
1.0 MB
.pad/1030765
1.0 MB
.pad/1028323
1.0 MB
.pad/1027846
1.0 MB
.pad/1020138
1.0 MB
.pad/942988
943.0 kB
.pad/936617
936.6 kB
.pad/930914
930.9 kB
.pad/927348
927.3 kB
.pad/917798
917.8 kB
.pad/917750
917.8 kB
.pad/902698
902.7 kB
.pad/898178
898.2 kB
.pad/892890
892.9 kB
.pad/855164
855.2 kB
.pad/816962
817.0 kB
.pad/798400
798.4 kB
.pad/791407
791.4 kB
.pad/765894
765.9 kB
.pad/740801
740.8 kB
.pad/720940
720.9 kB
.pad/703688
703.7 kB
.pad/699902
699.9 kB
.pad/697910
697.9 kB
.pad/688552
688.6 kB
.pad/683236
683.2 kB
.pad/670965
671.0 kB
.pad/649186
649.2 kB
.pad/637016
637.0 kB
.pad/599935
599.9 kB
.pad/596216
596.2 kB
.pad/589937
589.9 kB
.pad/588076
588.1 kB
.pad/584998
585.0 kB
.pad/578704
578.7 kB
.pad/573737
573.7 kB
.pad/567360
567.4 kB
.pad/531972
532.0 kB
.pad/508908
508.9 kB
.pad/507112
507.1 kB
.pad/480322
480.3 kB
.pad/479581
479.6 kB
.pad/458308
458.3 kB
.pad/422200
422.2 kB
.pad/415750
415.8 kB
.pad/409772
409.8 kB
.pad/402536
402.5 kB
.pad/390994
391.0 kB
.pad/378160
378.2 kB
.pad/376237
376.2 kB
.pad/371397
371.4 kB
.pad/345422
345.4 kB
.pad/331049
331.0 kB
.pad/323575
323.6 kB
.pad/323365
323.4 kB
.pad/318785
318.8 kB
.pad/253214
253.2 kB
.pad/246126
246.1 kB
.pad/244747
244.7 kB
.pad/225106
225.1 kB
.pad/209528
209.5 kB
.pad/203134
203.1 kB
.pad/195646
195.6 kB
.pad/189649
189.6 kB
.pad/177695
177.7 kB
.pad/177233
177.2 kB
.pad/163853
163.9 kB
.pad/156381
156.4 kB
.pad/127492
127.5 kB
title.jpg
106.8 kB
.pad/103117
103.1 kB
.pad/97018
97.0 kB
.pad/87105
87.1 kB
.pad/78982
79.0 kB
.pad/78724
78.7 kB
.pad/58932
58.9 kB
.pad/40236
40.2 kB
17. Appendix/9. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt
28.4 kB
17. Appendix/14. What order should I take your courses in (part 2).vtt
20.7 kB
17. Appendix/7. How to Code by Yourself (part 1).vtt
20.3 kB
17. Appendix/4. Windows-Focused Environment Setup 2018.vtt
17.8 kB
.pad/17341
17.3 kB
2. Review/1. Review of Basic Concepts.vtt
16.4 kB
8. TensorFlow/3. What is a Session (And more).vtt
16.4 kB
.pad/15983
16.0 kB
11. Project Facial Expression Recognition/2. Facial Expression Recognition Problem Description.vtt
14.7 kB
17. Appendix/13. What order should I take your courses in (part 1).vtt
14.4 kB
11. Project Facial Expression Recognition/5. Class-Based ANN in Theano.vtt
13.7 kB
4. Momentum and adaptive learning rates/4. Variable and adaptive learning rates.vtt
13.5 kB
15. PyTorch/1. PyTorch Basics.vtt
13.2 kB
17. Appendix/6. How to Succeed in this Course (Long Version).vtt
13.2 kB
12. Modern Regularization Techniques/2. Dropout Regularization.vtt
13.0 kB
17. Appendix/5. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt
12.7 kB
13. Batch Normalization/3. Batch Normalization Theory.vtt
12.7 kB
17. Appendix/10. Proof that using Jupyter Notebook is the same as not using it.vtt
12.5 kB
4. Momentum and adaptive learning rates/6. Adam Optimization.vtt
12.2 kB
17. Appendix/8. How to Code by Yourself (part 2).vtt
11.9 kB
11. Project Facial Expression Recognition/6. Class-Based ANN in TensorFlow.vtt
11.8 kB
7. Theano/3. Is Theano Dead.vtt
11.6 kB
.pad/11175
11.2 kB
.pad/10580
10.6 kB
1. Introduction and Outline/1. Outline - what did you learn previously, and what will you learn in this course.vtt
10.0 kB
6. Weight Initialization/3. Weight Initialization.vtt
9.3 kB
17. Appendix/2. What's the difference between neural networks and deep learning.vtt
9.1 kB
5. Choosing Hyperparameters/3. Grid Search in Code.vtt
8.3 kB
14. Keras/1. Keras Discussion.vtt
8.2 kB
9. GPU Speedup, Homework, and Other Misc Topics/5. Theano vs. TensorFlow.vtt
7.7 kB
11. Project Facial Expression Recognition/3. The class imbalance problem.vtt
7.3 kB
7. Theano/1. Theano Basics Variables, Functions, Expressions, Optimization.vtt
7.2 kB
13. Batch Normalization/7. Batch Normalization Theano (part 2).vtt
7.1 kB
6. Weight Initialization/2. Vanishing and Exploding Gradients.vtt
7.1 kB
4. Momentum and adaptive learning rates/1. Using Momentum to Speed Up Training.vtt
7.0 kB
4. Momentum and adaptive learning rates/2. Nesterov Momentum.vtt
6.9 kB
.pad/6785
6.8 kB
14. Keras/2. Keras in Code.vtt
6.6 kB
12. Modern Regularization Techniques/4. Noise Injection.vtt
6.3 kB
4. Momentum and adaptive learning rates/7. Adam in Code.vtt
6.1 kB
13. Batch Normalization/5. Batch Normalization Tensorflow (part 2).vtt
6.1 kB
13. Batch Normalization/4. Batch Normalization Tensorflow (part 1).vtt
6.1 kB
10. Transition to the 2nd Half of the Course/1. Transition to the 2nd Half of the Course.vtt
6.0 kB
3. Gradient Descent Full vs Batch vs Stochastic/2. Full vs Batch vs Stochastic Gradient Descent in code.vtt
6.0 kB
11. Project Facial Expression Recognition/1. Facial Expression Recognition Project Introduction.vtt
5.8 kB
8. TensorFlow/1. TensorFlow Basics Variables, Functions, Expressions, Optimization.vtt
5.8 kB
4. Momentum and adaptive learning rates/3. Momentum in Code.vtt
5.6 kB
9. GPU Speedup, Homework, and Other Misc Topics/4. How to Improve your Theano and Tensorflow Skills.vtt
5.5 kB
8. TensorFlow/2. Building a neural network in TensorFlow.vtt
5.5 kB
17. Appendix/12. Python 2 vs Python 3.vtt
5.5 kB
11. Project Facial Expression Recognition/4. Utilities walkthrough.vtt
5.4 kB
17. Appendix/3. Manually Choosing Learning Rate and Regularization Penalty.vtt
5.1 kB
1. Introduction and Outline/2. Where does this course fit into your deep learning studies.vtt
5.1 kB
13. Batch Normalization/6. Batch Normalization Theano (part 1).vtt
4.9 kB
13. Batch Normalization/2. Exponentially-Smoothed Averages.vtt
4.9 kB
14. Keras/3. Keras Functional API.vtt
4.8 kB
5. Choosing Hyperparameters/5. Random Search in Code.vtt
4.4 kB
9. GPU Speedup, Homework, and Other Misc Topics/1. Setting up a GPU Instance on Amazon Web Services.vtt
4.3 kB
2. Review/2. Where to get the MNIST dataset and Establishing a Linear Benchmark.vtt
4.3 kB
5. Choosing Hyperparameters/1. Hyperparameter Optimization Cross-validation, Grid Search, and Random Search.vtt
4.2 kB
12. Modern Regularization Techniques/3. Dropout Intuition.vtt
4.1 kB
7. Theano/2. Building a neural network in Theano.vtt
4.1 kB
9. GPU Speedup, Homework, and Other Misc Topics/2. Can Big Data be used to Speed Up Backpropagation.vtt
3.9 kB
4. Momentum and adaptive learning rates/5. Constant learning rate vs. RMSProp in Code.vtt
3.9 kB
17. Appendix/11. How to Uncompress a .tar.gz file.vtt
3.8 kB
3. Gradient Descent Full vs Batch vs Stochastic/1. What are full, batch, and stochastic gradient descent.vtt
3.6 kB
5. Choosing Hyperparameters/2. Sampling Logarithmically.vtt
3.5 kB
17. Appendix/1. What is the Appendix.vtt
3.4 kB
6. Weight Initialization/4. Local vs. Global Minima.vtt
3.2 kB
12. Modern Regularization Techniques/1. Modern Regularization Techniques Section Introduction.vtt
2.7 kB
9. GPU Speedup, Homework, and Other Misc Topics/3. Exercises and Concepts Still to be Covered.vtt
2.7 kB
15. PyTorch/2. PyTorch Dropout.vtt
2.7 kB
15. PyTorch/3. PyTorch Batch Norm.vtt
2.7 kB
12. Modern Regularization Techniques/5. Modern Regularization Techniques Section Summary.vtt
2.4 kB
13. Batch Normalization/1. Batch Normalization Introduction.vtt
2.3 kB
13. Batch Normalization/8. Noise Perspective.vtt
2.3 kB
13. Batch Normalization/9. Batch Normalization Summary.vtt
1.9 kB
6. Weight Initialization/5. Weight Initialization Section Summary.vtt
1.9 kB
5. Choosing Hyperparameters/4. Modifying Grid Search.vtt
1.6 kB
11. Project Facial Expression Recognition/7. Facial Expression Recognition Project Summary.vtt
1.5 kB
6. Weight Initialization/1. Weight Initialization Section Introduction.vtt
1.1 kB
16. PyTorch, CNTK, and MXNet/1. PyTorch, CNTK, and MXNet.vtt
947 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!