磁力链接

magnet:?xt=urn:btih:3C6D3ADE523F621ABA2F35FA894753C5763A4468
推荐使用PIKPAK网盘下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看

资源截图

API Integration

文件列表

  • ~Get Your Files Here !/14 - Assignment 3/1. Configure a template notebook based on new datasets.mp4 42.4 MB
  • ~Get Your Files Here !/10 - Assignment 2/1. Configure a template notebook based on new datasets.mp4 41.7 MB
  • ~Get Your Files Here !/4 - Assignment 1/2. Configure a template notebook based on new datasets.mp4 38.4 MB
  • ~Get Your Files Here !/4 - Assignment 1/1. Download US energy data using Python with EIA API.mp4 28.4 MB
  • ~Get Your Files Here !/15 - Walk-Forward Validation/2. Run a walk-forward experiment with multiple models.mp4 27.9 MB
  • ~Get Your Files Here !/13 - Evaluate and Compare Time Series Models Train Test Split/3. Evaluate multiple models at once.mp4 27.0 MB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/7. Diagnostics to validate assumptions.mp4 25.7 MB
  • ~Get Your Files Here !/13 - Evaluate and Compare Time Series Models Train Test Split/2. Train-test split for one model.mp4 23.9 MB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/5. ACF and PACF.mp4 19.1 MB
  • ~Get Your Files Here !/5 - Model Time Series to Forecast Baseline Models/3. Moving average method.mp4 17.8 MB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/6. Playground to try different configurations.mp4 17.7 MB
  • ~Get Your Files Here !/12 - Prophet Modeling/2. Model fit step by step.mp4 17.6 MB
  • ~Get Your Files Here !/5 - Model Time Series to Forecast Baseline Models/2. Build DataFrame to gather forecasted future values.mp4 17.5 MB
  • ~Get Your Files Here !/3 - Time Series Decomposition/6. Compare models using Plotly interactive visualization.mp4 16.7 MB
  • ~Get Your Files Here !/9 - Metrics to Measure Model Performance/2. Error metrics and steps to calculate.mp4 16.6 MB
  • ~Get Your Files Here !/3 - Time Series Decomposition/2. Data preprocessing for insightful decomposition.mp4 15.7 MB
  • ~Get Your Files Here !/3 - Time Series Decomposition/5. Build DataFrame of components.mp4 14.6 MB
  • ~Get Your Files Here !/13 - Evaluate and Compare Time Series Models Train Test Split/1. Why test on unseen data during model fit.mp4 14.3 MB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/4. Differencing to achieve stationarity.mp4 14.2 MB
  • ~Get Your Files Here !/15 - Walk-Forward Validation/3. How does TimeSeriesSplit work to produce walk-forward sets.mp4 13.7 MB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/2. Load CSV and set dtype as datetime.mp4 13.2 MB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/2. Fit mathematical equation model.mp4 13.0 MB
  • ~Get Your Files Here !/7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)/2. Model fit and forecast.mp4 11.8 MB
  • ~Get Your Files Here !/3 - Time Series Decomposition/4. Interpret decomposition models Additive vs. multiplicative.mp4 11.3 MB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/2. Python libraries for data visualization.mp4 11.2 MB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/4. Customize default Plotly theme.mp4 11.1 MB
  • ~Get Your Files Here !/8 - Data Stationarity/2. Log transformation to achieve data stationarity.mp4 10.9 MB
  • ~Get Your Files Here !/0 - Introduction/2. How to use Codespaces.mp4 9.7 MB
  • ~Get Your Files Here !/3 - Time Series Decomposition/3. Seasonal decompose with Statsmodels.mp4 9.4 MB
  • ~Get Your Files Here !/4 - Assignment 1/4. Using Copilot to interpret a visual report with AI.mp4 9.4 MB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/5. How to interpret different plot types.mp4 8.9 MB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/4. Why set the datetime column as index.mp4 8.8 MB
  • ~Get Your Files Here !/11 - Exponential Smoothing Models/3. Understand model configurations based on playground.mp4 8.8 MB
  • ~Get Your Files Here !/4 - Assignment 1/3. How to specify the aggregation rule and periods.mp4 8.6 MB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/6. Tricks to visualize multiple time series at once.mp4 8.3 MB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/1. Methods to visualize data with Python.mp4 8.2 MB
  • ~Get Your Files Here !/9 - Metrics to Measure Model Performance/1. Why use a metric that aggregates the residuals of a model.mp4 8.1 MB
  • ~Get Your Files Here !/11 - Exponential Smoothing Models/4. Diagnostics to validate assumptions and inform model choice.mp4 8.0 MB
  • ~Get Your Files Here !/9 - Metrics to Measure Model Performance/3. Interpretation of metrics in business terms.mp4 7.8 MB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/1. Introduction to developing ARIMA models.mp4 7.8 MB
  • ~Get Your Files Here !/8 - Data Stationarity/3. Reverse log transformation on forecasted data.mp4 7.8 MB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/8. Summary Important steps to consider in ARIMA modeling.mp4 7.7 MB
  • ~Get Your Files Here !/11 - Exponential Smoothing Models/2. Model fit and forecast.mp4 7.5 MB
  • ~Get Your Files Here !/15 - Walk-Forward Validation/1. Walk-forward validation as a more realistic choice.mp4 7.4 MB
  • ~Get Your Files Here !/7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)/4. Summary From ARIMA to SARIMA.mp4 7.3 MB
  • ~Get Your Files Here !/3 - Time Series Decomposition/1. Decomposing California solar energy using data from EIA.mp4 7.2 MB
  • ~Get Your Files Here !/12 - Prophet Modeling/1. Introduction to Prophet A semi-automatic time series model.mp4 7.0 MB
  • ~Get Your Files Here !/12 - Prophet Modeling/4. Data preprocessing to forecast and visualize values.mp4 6.8 MB
  • ~Get Your Files Here !/8 - Data Stationarity/4. Data transformations to achieve stationarity.mp4 6.5 MB
  • ~Get Your Files Here !/5 - Model Time Series to Forecast Baseline Models/4. Seasonal naive method.mp4 6.4 MB
  • ~Get Your Files Here !/12 - Prophet Modeling/5. Configure seasonality parameters in Prophet.mp4 6.2 MB
  • ~Get Your Files Here !/7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)/1. Introducing seasonal order with SARIMA model.mp4 6.1 MB
  • ~Get Your Files Here !/12 - Prophet Modeling/3. Feed holidays data into the model.mp4 6.1 MB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/5. Load and preprocess data from Excel.mp4 5.9 MB
  • ~Get Your Files Here !/7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)/3. Diagnostics to validate assumptions.mp4 5.8 MB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/3. How ARIMA changes with parameters P, D, and Q.mp4 5.3 MB
  • ~Get Your Files Here !/5 - Model Time Series to Forecast Baseline Models/1. Intuition behind forecasting models.mp4 5.0 MB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/1. Search and download Federal Reserve Economic Data.mp4 4.7 MB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/3. Set Plotly as pandas backend for plotting.mp4 4.2 MB
  • ~Get Your Files Here !/12 - Prophet Modeling/6. How to interpret diagnostics with robust models.mp4 4.0 MB
  • ~Get Your Files Here !/0 - Introduction/1. Why learn practical Python for time series forecasting.mp4 4.0 MB
  • ~Get Your Files Here !/11 - Exponential Smoothing Models/1. SARIMA vs. exponential smoothing.mp4 3.7 MB
  • ~Get Your Files Here !/16 - Conclusion/1. Next steps.mp4 3.5 MB
  • ~Get Your Files Here !/8 - Data Stationarity/1. How does stationarity look in a time series.mp4 3.1 MB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/3. Datetime components on different columns.mp4 2.5 MB
  • ~Get Your Files Here !/10 - Assignment 2/1. Configure a template notebook based on new datasets.srt 17.0 kB
  • ~Get Your Files Here !/14 - Assignment 3/1. Configure a template notebook based on new datasets.srt 14.7 kB
  • ~Get Your Files Here !/4 - Assignment 1/2. Configure a template notebook based on new datasets.srt 13.5 kB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/7. Diagnostics to validate assumptions.srt 11.6 kB
  • ~Get Your Files Here !/13 - Evaluate and Compare Time Series Models Train Test Split/2. Train-test split for one model.srt 10.9 kB
  • ~Get Your Files Here !/15 - Walk-Forward Validation/2. Run a walk-forward experiment with multiple models.srt 10.3 kB
  • ~Get Your Files Here !/13 - Evaluate and Compare Time Series Models Train Test Split/3. Evaluate multiple models at once.srt 9.9 kB
  • ~Get Your Files Here !/4 - Assignment 1/1. Download US energy data using Python with EIA API.srt 9.4 kB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/5. ACF and PACF.srt 8.6 kB
  • ~Get Your Files Here !/5 - Model Time Series to Forecast Baseline Models/2. Build DataFrame to gather forecasted future values.srt 7.9 kB
  • ~Get Your Files Here !/5 - Model Time Series to Forecast Baseline Models/3. Moving average method.srt 7.8 kB
  • ~Get Your Files Here !/12 - Prophet Modeling/2. Model fit step by step.srt 7.4 kB
  • ~Get Your Files Here !/9 - Metrics to Measure Model Performance/2. Error metrics and steps to calculate.srt 7.0 kB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/2. Load CSV and set dtype as datetime.srt 7.0 kB
  • ~Get Your Files Here !/3 - Time Series Decomposition/2. Data preprocessing for insightful decomposition.srt 6.9 kB
  • ~Get Your Files Here !/13 - Evaluate and Compare Time Series Models Train Test Split/1. Why test on unseen data during model fit.srt 6.5 kB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/4. Differencing to achieve stationarity.srt 6.5 kB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/2. Python libraries for data visualization.srt 6.4 kB
  • ~Get Your Files Here !/3 - Time Series Decomposition/6. Compare models using Plotly interactive visualization.srt 6.4 kB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/6. Playground to try different configurations.srt 6.1 kB
  • ~Get Your Files Here !/15 - Walk-Forward Validation/3. How does TimeSeriesSplit work to produce walk-forward sets.srt 5.9 kB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/2. Fit mathematical equation model.srt 5.6 kB
  • ~Get Your Files Here !/3 - Time Series Decomposition/5. Build DataFrame of components.srt 5.6 kB
  • ~Get Your Files Here !/3 - Time Series Decomposition/4. Interpret decomposition models Additive vs. multiplicative.srt 5.4 kB
  • ~Get Your Files Here !/7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)/2. Model fit and forecast.srt 5.2 kB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/4. Customize default Plotly theme.srt 5.2 kB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/4. Why set the datetime column as index.srt 5.0 kB
  • ~Get Your Files Here !/8 - Data Stationarity/2. Log transformation to achieve data stationarity.srt 4.9 kB
  • ~Get Your Files Here !/0 - Introduction/2. How to use Codespaces.srt 4.7 kB
  • ~Get Your Files Here !/3 - Time Series Decomposition/3. Seasonal decompose with Statsmodels.srt 4.5 kB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/5. How to interpret different plot types.srt 4.3 kB
  • ~Get Your Files Here !/9 - Metrics to Measure Model Performance/3. Interpretation of metrics in business terms.srt 4.3 kB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/6. Tricks to visualize multiple time series at once.srt 4.2 kB
  • ~Get Your Files Here !/11 - Exponential Smoothing Models/3. Understand model configurations based on playground.srt 3.9 kB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/8. Summary Important steps to consider in ARIMA modeling.srt 3.9 kB
  • ~Get Your Files Here !/8 - Data Stationarity/3. Reverse log transformation on forecasted data.srt 3.8 kB
  • ~Get Your Files Here !/11 - Exponential Smoothing Models/4. Diagnostics to validate assumptions and inform model choice.srt 3.7 kB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/5. Load and preprocess data from Excel.srt 3.4 kB
  • ~Get Your Files Here !/7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)/3. Diagnostics to validate assumptions.srt 3.3 kB
  • ~Get Your Files Here !/4 - Assignment 1/4. Using Copilot to interpret a visual report with AI.srt 3.3 kB
  • ~Get Your Files Here !/4 - Assignment 1/3. How to specify the aggregation rule and periods.srt 3.3 kB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/1. Methods to visualize data with Python.srt 3.2 kB
  • ~Get Your Files Here !/9 - Metrics to Measure Model Performance/1. Why use a metric that aggregates the residuals of a model.srt 3.2 kB
  • ~Get Your Files Here !/8 - Data Stationarity/4. Data transformations to achieve stationarity.srt 3.2 kB
  • ~Get Your Files Here !/5 - Model Time Series to Forecast Baseline Models/4. Seasonal naive method.srt 3.1 kB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/1. Introduction to developing ARIMA models.srt 3.1 kB
  • ~Get Your Files Here !/11 - Exponential Smoothing Models/2. Model fit and forecast.srt 3.0 kB
  • ~Get Your Files Here !/12 - Prophet Modeling/4. Data preprocessing to forecast and visualize values.srt 3.0 kB
  • ~Get Your Files Here !/7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)/4. Summary From ARIMA to SARIMA.srt 3.0 kB
  • ~Get Your Files Here !/3 - Time Series Decomposition/1. Decomposing California solar energy using data from EIA.srt 3.0 kB
  • ~Get Your Files Here !/15 - Walk-Forward Validation/1. Walk-forward validation as a more realistic choice.srt 3.0 kB
  • ~Get Your Files Here !/12 - Prophet Modeling/1. Introduction to Prophet A semi-automatic time series model.srt 2.8 kB
  • ~Get Your Files Here !/12 - Prophet Modeling/5. Configure seasonality parameters in Prophet.srt 2.8 kB
  • ~Get Your Files Here !/5 - Model Time Series to Forecast Baseline Models/1. Intuition behind forecasting models.srt 2.7 kB
  • ~Get Your Files Here !/12 - Prophet Modeling/3. Feed holidays data into the model.srt 2.5 kB
  • ~Get Your Files Here !/6 - Autoregressive Integrated Moving Average (ARIMA)/3. How ARIMA changes with parameters P, D, and Q.srt 2.2 kB
  • ~Get Your Files Here !/7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)/1. Introducing seasonal order with SARIMA model.srt 2.1 kB
  • ~Get Your Files Here !/2 - Visualize Time Series Data/3. Set Plotly as pandas backend for plotting.srt 2.0 kB
  • ~Get Your Files Here !/12 - Prophet Modeling/6. How to interpret diagnostics with robust models.srt 2.0 kB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/1. Search and download Federal Reserve Economic Data.srt 2.0 kB
  • ~Get Your Files Here !/11 - Exponential Smoothing Models/1. SARIMA vs. exponential smoothing.srt 1.9 kB
  • ~Get Your Files Here !/16 - Conclusion/1. Next steps.srt 1.6 kB
  • ~Get Your Files Here !/8 - Data Stationarity/1. How does stationarity look in a time series.srt 1.5 kB
  • ~Get Your Files Here !/1 - Foundations Load and Preprocess Time Series Data Files/3. Datetime components on different columns.srt 1.5 kB
  • ~Get Your Files Here !/0 - Introduction/1. Why learn practical Python for time series forecasting.srt 1.1 kB
  • Get Bonus Downloads Here.url 180 Bytes
  • ~Get Your Files Here !/Bonus Resources.txt 70 Bytes

温馨提示

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!