搜索
[CourseClub.NET] Coursera - Applied Machine Learning in Python
磁力链接/BT种子名称
[CourseClub.NET] Coursera - Applied Machine Learning in Python
磁力链接/BT种子简介
种子哈希:
2aebbd9a938b03ea4de16737994cb85b9fbdfd68
文件大小:
881.06M
已经下载:
4201
次
下载速度:
极快
收录时间:
2020-01-24
最近下载:
2025-10-09
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:2AEBBD9A938B03EA4DE16737994CB85B9FBDFD68
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
star-0
gangbang creampie
推特 身高
hotel transylvania the series hotel transylvania
9乙女
【2025年新品】
werner herzog radical dreamer 2022
双层公寓
090112_419
良家
lord of the rings the war of the rohirrim 2024
三吉彩花
alexis malone. .xxx.1080p.mp4 xc
ndr-005
adn-036
重口性奴
sone-101
2025付费
windows10
roxy
jizz solo
無修正-无码
신재은
入珠
oppenheimer 2023
avop-207
fc2-ppv-4772122
2025-2-7酒店偷拍
战·争
john.wick.chapter.4.2023.uhd
文件列表
003.Module 3 Evaluation/019. Model Evaluation & Selection.mp4
48.3 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/002. Key Concepts in Machine Learning.mp4
46.7 MB
004.Module 4 Supervised Machine Learning - Part 2/029. Neural Networks.mp4
43.5 MB
002.Module 2 Supervised Machine Learning/012. Linear Regression Ridge, Lasso, and Polynomial Regression.mp4
41.9 MB
002.Module 2 Supervised Machine Learning/016. Kernelized Support Vector Machines.mp4
41.0 MB
002.Module 2 Supervised Machine Learning/007. Introduction to Supervised Machine Learning.mp4
39.7 MB
002.Module 2 Supervised Machine Learning/018. Decision Trees.mp4
39.7 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/006. K-Nearest Neighbors Classification.mp4
38.0 MB
003.Module 3 Evaluation/025. Model Selection Optimizing Classifiers for Different Evaluation Metrics.mp4
36.2 MB
004.Module 4 Supervised Machine Learning - Part 2/031. Data Leakage.mp4
34.5 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/005. Examining the Data.mp4
33.8 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/004. An Example Machine Learning Problem.mp4
33.3 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/001. Introduction.mp4
32.6 MB
002.Module 2 Supervised Machine Learning/011. Linear Regression Least-Squares.mp4
31.5 MB
005.Optional Unsupervised Machine Learning/034. Clustering.mp4
28.5 MB
004.Module 4 Supervised Machine Learning - Part 2/027. Random Forests.mp4
27.7 MB
002.Module 2 Supervised Machine Learning/014. Linear Classifiers Support Vector Machines.mp4
23.8 MB
002.Module 2 Supervised Machine Learning/010. K-Nearest Neighbors Classification and Regression.mp4
23.6 MB
004.Module 4 Supervised Machine Learning - Part 2/026. Naive Bayes Classifiers.mp4
22.4 MB
003.Module 3 Evaluation/020. Confusion Matrices & Basic Evaluation Metrics.mp4
21.8 MB
002.Module 2 Supervised Machine Learning/013. Logistic Regression.mp4
21.3 MB
002.Module 2 Supervised Machine Learning/017. Cross-Validation.mp4
21.0 MB
003.Module 3 Evaluation/023. Multi-Class Evaluation.mp4
20.7 MB
002.Module 2 Supervised Machine Learning/008. Overfitting and Underfitting.mp4
20.5 MB
004.Module 4 Supervised Machine Learning - Part 2/030. Deep Learning (Optional).mp4
18.3 MB
003.Module 3 Evaluation/024. Regression Evaluation.mp4
17.8 MB
005.Optional Unsupervised Machine Learning/033. Dimensionality Reduction and Manifold Learning.mp4
16.9 MB
002.Module 2 Supervised Machine Learning/015. Multi-Class Classification.mp4
16.2 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/003. Python Tools for Machine Learning.mp4
13.5 MB
003.Module 3 Evaluation/021. Classifier Decision Functions.mp4
13.3 MB
004.Module 4 Supervised Machine Learning - Part 2/028. Gradient Boosted Decision Trees.mp4
12.4 MB
002.Module 2 Supervised Machine Learning/009. Supervised Learning Datasets.mp4
11.8 MB
005.Optional Unsupervised Machine Learning/032. Introduction.mp4
11.2 MB
006.Conclusion/035. Conclusion.mp4
10.4 MB
003.Module 3 Evaluation/022. Precision-recall and ROC curves.mp4
9.7 MB
003.Module 3 Evaluation/019. Model Evaluation & Selection.srt
30.8 kB
002.Module 2 Supervised Machine Learning/018. Decision Trees.srt
29.0 kB
004.Module 4 Supervised Machine Learning - Part 2/029. Neural Networks.srt
28.6 kB
002.Module 2 Supervised Machine Learning/012. Linear Regression Ridge, Lasso, and Polynomial Regression.srt
27.8 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/006. K-Nearest Neighbors Classification.srt
26.8 kB
002.Module 2 Supervised Machine Learning/016. Kernelized Support Vector Machines.srt
26.2 kB
002.Module 2 Supervised Machine Learning/007. Introduction to Supervised Machine Learning.srt
22.7 kB
002.Module 2 Supervised Machine Learning/011. Linear Regression Least-Squares.srt
21.8 kB
005.Optional Unsupervised Machine Learning/034. Clustering.srt
20.4 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/002. Key Concepts in Machine Learning.srt
19.3 kB
003.Module 3 Evaluation/025. Model Selection Optimizing Classifiers for Different Evaluation Metrics.srt
18.6 kB
002.Module 2 Supervised Machine Learning/013. Logistic Regression.srt
17.5 kB
002.Module 2 Supervised Machine Learning/010. K-Nearest Neighbors Classification and Regression.srt
17.5 kB
004.Module 4 Supervised Machine Learning - Part 2/027. Random Forests.srt
17.5 kB
004.Module 4 Supervised Machine Learning - Part 2/031. Data Leakage.srt
17.1 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/001. Introduction.srt
16.5 kB
003.Module 3 Evaluation/020. Confusion Matrices & Basic Evaluation Metrics.srt
16.2 kB
002.Module 2 Supervised Machine Learning/008. Overfitting and Underfitting.srt
16.2 kB
002.Module 2 Supervised Machine Learning/014. Linear Classifiers Support Vector Machines.srt
15.9 kB
003.Module 3 Evaluation/023. Multi-Class Evaluation.srt
15.6 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/004. An Example Machine Learning Problem.srt
15.2 kB
005.Optional Unsupervised Machine Learning/033. Dimensionality Reduction and Manifold Learning.srt
13.8 kB
002.Module 2 Supervised Machine Learning/017. Cross-Validation.srt
13.3 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/005. Examining the Data.srt
12.3 kB
004.Module 4 Supervised Machine Learning - Part 2/026. Naive Bayes Classifiers.srt
11.5 kB
004.Module 4 Supervised Machine Learning - Part 2/030. Deep Learning (Optional).srt
10.6 kB
003.Module 3 Evaluation/021. Classifier Decision Functions.srt
9.3 kB
004.Module 4 Supervised Machine Learning - Part 2/028. Gradient Boosted Decision Trees.srt
8.6 kB
002.Module 2 Supervised Machine Learning/015. Multi-Class Classification.srt
8.5 kB
003.Module 3 Evaluation/024. Regression Evaluation.srt
8.0 kB
003.Module 3 Evaluation/022. Precision-recall and ROC curves.srt
7.7 kB
002.Module 2 Supervised Machine Learning/009. Supervised Learning Datasets.srt
6.9 kB
005.Optional Unsupervised Machine Learning/032. Introduction.srt
6.6 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/003. Python Tools for Machine Learning.srt
6.3 kB
006.Conclusion/035. Conclusion.srt
4.0 kB
[CourseClub.NET].url
123 Bytes
[FreeCourseSite.Com].url
53 Bytes
[DesireCourse.Com].url
51 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!