搜索
[FreeTutorials.Us] data-science-deep-learning-in-python
磁力链接/BT种子名称
[FreeTutorials.Us] data-science-deep-learning-in-python
磁力链接/BT种子简介
种子哈希:
0ea15e44267ac451b47828b54d499161c0dfb162
文件大小:
722.02M
已经下载:
1213
次
下载速度:
极快
收录时间:
2020-02-18
最近下载:
2025-10-14
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:0EA15E44267AC451B47828B54D499161C0DFB162
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
小蓝俱乐部
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
51动漫
ai色色
禁漫天堂
草榴社区
哆哔涩漫
海角乱伦社区
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
暗网禁区
91PORN
PornHub
抖音Max
呦乐园
搜同
糖心视频
麻豆Vlog
暗网Xvideo
资源截图
API Integration
显示图片
最近搜索
女儿甜甜
cory.chase.24
cemd-035
mira
bj dms
dvaj-631
以幸存者之名
嫩妹
汝
ipx-931
小海媚
聊半个月极品苗条身材清
kikey _baby
freeusemilf.23.06.24
bj dmsdms
もんむす・くえすと ぱらどっくすrpg前章
伪娘
dass-187流出
犯母
解剖生殖器
2023
重口
abw-268
yq露出
王静
噗噗pupu比基尼
fc2-ppv-4765775
夫婦の選択
無修正
fc2-ppv-2441540
文件列表
03 Training a neural network/026 Backpropagation in code.mp4
48.6 MB
07 Appendix/054 How to install Numpy Scipy Matplotlib Pandas IPython Theano and TensorFlow.mp4
46.0 MB
05 TensorFlow exercises practice and what to learn next/040 Visualizing what a neural network has learned using TensorFlow Playground.mp4
45.3 MB
02 Classifying more than 2 things at a time/011 Feedforward in Slow-Mo part 1.mp4
31.8 MB
06 Project Facial Expression Recognition/048 Facial Expression Recognition in Code Binary Sigmoid.mp4
26.4 MB
07 Appendix/055 How to Code by Yourself part 1.mp4
25.7 MB
06 Project Facial Expression Recognition/050 Facial Expression Recognition in Code ANN Softmax.mp4
24.6 MB
06 Project Facial Expression Recognition/045 Facial Expression Recognition Problem Description.mp4
22.5 MB
03 Training a neural network/028 E-Commerce Course Project Training Logistic Regression with Softmax.mp4
21.2 MB
06 Project Facial Expression Recognition/049 Facial Expression Recognition in Code Logistic Regression Softmax.mp4
20.7 MB
03 Training a neural network/023 Backpropagation Intro.mp4
20.0 MB
07 Appendix/053 Backpropagation with Softmax Troubleshooting.mp4
19.0 MB
02 Classifying more than 2 things at a time/012 Feedforward in Slow-Mo part 2.mp4
17.5 MB
05 TensorFlow exercises practice and what to learn next/039 TensorFlow plug-and-play example.mp4
16.7 MB
03 Training a neural network/029 E-Commerce Course Project Training a Neural Network.mp4
16.2 MB
07 Appendix/056 How to Code by Yourself part 2.mp4
15.5 MB
01 What is a neural network/005 Introduction to the E-Commerce Course Project.mp4
15.5 MB
03 Training a neural network/021 What do all these symbols and letters mean.mp4
15.3 MB
05 TensorFlow exercises practice and what to learn next/044 Deep neural networks in just 3 lines of code with Sci-Kit Learn.mp4
14.8 MB
04 Practical Machine Learning/034 Donut and XOR Revisited.mp4
14.6 MB
02 Classifying more than 2 things at a time/015 Building an entire feedforward neural network in Python.mp4
14.5 MB
06 Project Facial Expression Recognition/047 Utilities walkthrough.mp4
14.1 MB
02 Classifying more than 2 things at a time/008 Interpreting the Weights of a Neural Network.mp4
13.1 MB
03 Training a neural network/025 Backpropagation - recursiveness.mp4
11.7 MB
02 Classifying more than 2 things at a time/016 E-Commerce Course Project Pre-Processing the Data.mp4
11.7 MB
03 Training a neural network/024 Backpropagation - what does the weight update depend on.mp4
10.6 MB
06 Project Facial Expression Recognition/046 The class imbalance problem.mp4
10.6 MB
03 Training a neural network/022 What does it mean to train a neural network.mp4
10.2 MB
04 Practical Machine Learning/038 Practical Issues Section Summary.mp4
10.1 MB
05 TensorFlow exercises practice and what to learn next/043 How to get good at deep learning exercises.mp4
9.9 MB
02 Classifying more than 2 things at a time/006 Prediction Section Introduction and Outline.mp4
9.4 MB
01 What is a neural network/003 Deep Learning Readiness Test.mp4
9.0 MB
02 Classifying more than 2 things at a time/007 From Logistic Regression to Neural Networks.mp4
9.0 MB
01 What is a neural network/002 Where does this course fit into your deep learning studies.mp4
8.9 MB
07 Appendix/051 Gradient Descent Tutorial.mp4
8.8 MB
03 Training a neural network/030 Training Quiz.mp4
8.7 MB
05 TensorFlow exercises practice and what to learn next/042 You know more than you think you know.mp4
8.6 MB
02 Classifying more than 2 things at a time/014 Softmax in Code.mp4
8.1 MB
02 Classifying more than 2 things at a time/017 E-Commerce Course Project Making Predictions.mp4
7.9 MB
01 What is a neural network/004 Neural Networks with No Math.mp4
7.7 MB
04 Practical Machine Learning/037 Manually Choosing Learning Rate and Regularization Penalty.mp4
7.4 MB
04 Practical Machine Learning/036 Hyperparameters and Cross-Validation.mp4
7.3 MB
03 Training a neural network/027 The WRONG Way to Learn Backpropagation.mp4
7.2 MB
07 Appendix/052 Help with Softmax Derivative.mp4
6.6 MB
01 What is a neural network/001 Introduction and Outline.mp4
6.4 MB
05 TensorFlow exercises practice and what to learn next/041 Where to go from here.mp4
6.3 MB
02 Classifying more than 2 things at a time/018 Prediction Quizzes.mp4
5.3 MB
02 Classifying more than 2 things at a time/009 Softmax.mp4
4.8 MB
03 Training a neural network/020 Training Section Introduction and Outline.mp4
4.6 MB
03 Training a neural network/031 Training Section Summary.mp4
4.3 MB
02 Classifying more than 2 things at a time/013 Where to get the code for this course.mp4
3.1 MB
02 Classifying more than 2 things at a time/019 Prediction Section Summary.mp4
3.0 MB
04 Practical Machine Learning/032 Practical Issues Section Introduction and Outline.mp4
2.9 MB
02 Classifying more than 2 things at a time/010 Sigmoid vs. Softmax.mp4
2.5 MB
04 Practical Machine Learning/035 Common nonlinearities and their derivatives.mp4
2.5 MB
04 Practical Machine Learning/033 Donut and XOR Review.mp4
1.9 MB
Freetutorials.us.url
119 Bytes
[FreeTutorials.us].txt
75 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!