搜索
[FreeCourseLab.com] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接/BT种子名称
[FreeCourseLab.com] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接/BT种子简介
种子哈希:
0ce32fe1a70101bcfd8bd50d5a328e43f05f4f90
文件大小:
1.51G
已经下载:
742
次
下载速度:
极快
收录时间:
2020-02-13
最近下载:
2024-10-10
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:0CE32FE1A70101BCFD8BD50D5A328E43F05F4F90
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
少女日记
资源截图
API Integration
显示图片
最近搜索
清纯可爱双马尾嫩妹援交激战爆插无套内射
手机逼里
学院派模特
大尺度性爱私拍流出
柚木
ssis181
すみれ
裸模 嫩模
双
福
校花清纯下海
12小时互换
完美日记
onlyfans.2025.sybil
疯狂小学生
调教弟弟
桜都字幕组2021
上海留学生lexis
王者泄密流出
画质
森向 兄
给狼友们
柔式
主题酒店流出
金主定制
ai
包小瘦
tyod-101
动画片
塞上风云记电视剧全集
文件列表
10. Appendix/2. Windows-Focused Environment Setup 2018.mp4
195.4 MB
4. Build an Intelligent Tic-Tac-Toe Agent/4. The Value Function and Your First Reinforcement Learning Algorithm.mp4
108.8 MB
5. Markov Decision Proccesses/7. Bellman Examples.mp4
91.3 MB
10. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
2. High Level Overview of Reinforcement Learning and Course Outline/1. What is Reinforcement Learning.mp4
57.3 MB
3. Return of the Multi-Armed Bandit/9. Bayesian Thompson Sampling.mp4
54.4 MB
3. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.mp4
53.7 MB
10. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.1 MB
2. High Level Overview of Reinforcement Learning and Course Outline/1. What is Reinforcement Learning.vtt
45.0 MB
2. High Level Overview of Reinforcement Learning and Course Outline/4. Defining Some Terms.mp4
44.4 MB
10. Appendix/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
10. Appendix/11. What order should I take your courses in (part 2).mp4
39.4 MB
2. High Level Overview of Reinforcement Learning and Course Outline/2. On Unusual or Unexpected Strategies of RL.mp4
38.9 MB
1. Welcome/1. Introduction.mp4
35.9 MB
2. High Level Overview of Reinforcement Learning and Course Outline/3. Course Outline.mp4
32.5 MB
10. Appendix/10. What order should I take your courses in (part 1).mp4
30.7 MB
10. Appendix/4. How to Code by Yourself (part 1).mp4
25.7 MB
3. Return of the Multi-Armed Bandit/5. Designing Your Bandit Program.mp4
25.7 MB
6. Dynamic Programming/3. Designing Your RL Program.mp4
23.4 MB
4. Build an Intelligent Tic-Tac-Toe Agent/12. Tic Tac Toe Exercise.mp4
20.7 MB
5. Markov Decision Proccesses/5. Value Function Introduction.mp4
20.7 MB
10. Appendix/6. How to Succeed in this Course (Long Version).mp4
19.2 MB
10. Appendix/5. How to Code by Yourself (part 2).mp4
15.5 MB
9. Approximation Methods/9. Course Summary and Next Steps.mp4
13.9 MB
4. Build an Intelligent Tic-Tac-Toe Agent/2. Components of a Reinforcement Learning System.mp4
13.3 MB
6. Dynamic Programming/4. Iterative Policy Evaluation in Code.mp4
12.7 MB
6. Dynamic Programming/2. Gridworld in Code.mp4
12.0 MB
9. Approximation Methods/8. Semi-Gradient SARSA in Code.mp4
11.1 MB
3. Return of the Multi-Armed Bandit/10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.mp4
11.1 MB
7. Monte Carlo/6. Monte Carlo Control in Code.mp4
10.7 MB
4. Build an Intelligent Tic-Tac-Toe Agent/8. Tic Tac Toe Code The Environment.mp4
10.5 MB
4. Build an Intelligent Tic-Tac-Toe Agent/7. Tic Tac Toe Code Enumerating States Recursively.mp4
10.3 MB
1. Welcome/3. Strategy for Passing the Course.mp4
9.9 MB
4. Build an Intelligent Tic-Tac-Toe Agent/10. Tic Tac Toe Code Main Loop and Demo.mp4
9.9 MB
7. Monte Carlo/5. Monte Carlo Control.mp4
9.7 MB
6. Dynamic Programming/8. Policy Iteration in Windy Gridworld.mp4
9.6 MB
4. Build an Intelligent Tic-Tac-Toe Agent/9. Tic Tac Toe Code The Agent.mp4
9.4 MB
8. Temporal Difference Learning/5. SARSA in Code.mp4
9.2 MB
7. Monte Carlo/2. Monte Carlo Policy Evaluation.mp4
9.2 MB
9. Approximation Methods/6. TD(0) Semi-Gradient Prediction.mp4
8.8 MB
6. Dynamic Programming/11. Dynamic Programming Summary.mp4
8.7 MB
4. Build an Intelligent Tic-Tac-Toe Agent/11. Tic Tac Toe Summary.mp4
8.7 MB
5. Markov Decision Proccesses/6. Value Functions.mp4
8.7 MB
3. Return of the Multi-Armed Bandit/8. UCB1.mp4
8.6 MB
8. Temporal Difference Learning/4. SARSA.mp4
8.6 MB
7. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.mp4
8.4 MB
3. Return of the Multi-Armed Bandit/6. Comparing Different Epsilons.mp4
8.4 MB
7. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp4
8.3 MB
10. Appendix/9. Python 2 vs Python 3.mp4
8.2 MB
7. Monte Carlo/4. Policy Evaluation in Windy Gridworld.mp4
8.2 MB
6. Dynamic Programming/7. Policy Iteration in Code.mp4
8.0 MB
3. Return of the Multi-Armed Bandit/11. Nonstationary Bandits.mp4
7.9 MB
5. Markov Decision Proccesses/2. The Markov Property.mp4
7.5 MB
5. Markov Decision Proccesses/3. Defining and Formalizing the MDP.mp4
7.0 MB
9. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.mp4
6.9 MB
3. Return of the Multi-Armed Bandit/1. Problem Setup and The Explore-Exploit Dilemma.mp4
6.8 MB
9. Approximation Methods/2. Linear Models for Reinforcement Learning.mp4
6.8 MB
9. Approximation Methods/1. Approximation Intro.mp4
6.8 MB
9. Approximation Methods/3. Features.mp4
6.5 MB
6. Dynamic Programming/9. Value Iteration.mp4
6.5 MB
4. Build an Intelligent Tic-Tac-Toe Agent/1. Naive Solution to Tic-Tac-Toe.mp4
6.4 MB
8. Temporal Difference Learning/2. TD(0) Prediction.mp4
6.1 MB
7. Monte Carlo/9. Monte Carlo Summary.mp4
6.0 MB
10. Appendix/1. What is the Appendix.mp4
5.7 MB
8. Temporal Difference Learning/7. Q Learning in Code.mp4
5.7 MB
8. Temporal Difference Learning/3. TD(0) Prediction in Code.mp4
5.6 MB
5. Markov Decision Proccesses/4. Future Rewards.mp4
5.4 MB
3. Return of the Multi-Armed Bandit/7. Optimistic Initial Values.mp4
5.4 MB
4. Build an Intelligent Tic-Tac-Toe Agent/5. Tic Tac Toe Code Outline.mp4
5.3 MB
7. Monte Carlo/1. Monte Carlo Intro.mp4
5.2 MB
6. Dynamic Programming/10. Value Iteration in Code.mp4
5.1 MB
8. Temporal Difference Learning/6. Q Learning.mp4
5.1 MB
6. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4
5.1 MB
9. Approximation Methods/7. Semi-Gradient SARSA.mp4
4.9 MB
7. Monte Carlo/7. Monte Carlo Control without Exploring Starts.mp4
4.9 MB
6. Dynamic Programming/5. Policy Improvement.mp4
4.8 MB
1. Welcome/2. Where to get the Code.mp4
4.7 MB
4. Build an Intelligent Tic-Tac-Toe Agent/6. Tic Tac Toe Code Representing States.mp4
4.6 MB
4. Build an Intelligent Tic-Tac-Toe Agent/3. Notes on Assigning Rewards.mp4
4.4 MB
10. Appendix/12. Where to get discount coupons and FREE deep learning material.mp4
4.2 MB
8. Temporal Difference Learning/8. TD Summary.mp4
4.1 MB
5. Markov Decision Proccesses/1. Gridworld.mp4
3.5 MB
5. Markov Decision Proccesses/8. Optimal Policy and Optimal Value Function.mp4
3.4 MB
6. Dynamic Programming/6. Policy Iteration.mp4
3.3 MB
9. Approximation Methods/4. Monte Carlo Prediction with Approximation.mp4
3.0 MB
3. Return of the Multi-Armed Bandit/3. Epsilon-Greedy.mp4
2.9 MB
8. Temporal Difference Learning/1. Temporal Difference Intro.mp4
2.9 MB
5. Markov Decision Proccesses/9. MDP Summary.mp4
2.5 MB
3. Return of the Multi-Armed Bandit/4. Updating a Sample Mean.mp4
2.3 MB
10. Appendix/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt
30.6 kB
10. Appendix/4. How to Code by Yourself (part 1).vtt
28.0 kB
5. Markov Decision Proccesses/7. Bellman Examples.vtt
26.4 kB
10. Appendix/11. What order should I take your courses in (part 2).vtt
22.8 kB
4. Build an Intelligent Tic-Tac-Toe Agent/4. The Value Function and Your First Reinforcement Learning Algorithm.vtt
22.2 kB
10. Appendix/2. Windows-Focused Environment Setup 2018.vtt
19.4 kB
10. Appendix/5. How to Code by Yourself (part 2).vtt
17.1 kB
10. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt
17.0 kB
10. Appendix/10. What order should I take your courses in (part 1).vtt
15.5 kB
5. Markov Decision Proccesses/5. Value Function Introduction.vtt
14.8 kB
9. Approximation Methods/9. Course Summary and Next Steps.vtt
14.8 kB
10. Appendix/6. How to Succeed in this Course (Long Version).vtt
14.0 kB
4. Build an Intelligent Tic-Tac-Toe Agent/2. Components of a Reinforcement Learning System.vtt
13.7 kB
10. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.vtt
13.5 kB
3. Return of the Multi-Armed Bandit/9. Bayesian Thompson Sampling.vtt
11.3 kB
5. Markov Decision Proccesses/6. Value Functions.vtt
11.3 kB
4. Build an Intelligent Tic-Tac-Toe Agent/8. Tic Tac Toe Code The Environment.vtt
11.1 kB
1. Welcome/3. Strategy for Passing the Course.vtt
10.9 kB
4. Build an Intelligent Tic-Tac-Toe Agent/7. Tic Tac Toe Code Enumerating States Recursively.vtt
10.6 kB
3. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.vtt
10.5 kB
6. Dynamic Programming/2. Gridworld in Code.vtt
10.2 kB
4. Build an Intelligent Tic-Tac-Toe Agent/9. Tic Tac Toe Code The Agent.vtt
10.2 kB
7. Monte Carlo/2. Monte Carlo Policy Evaluation.vtt
10.1 kB
7. Monte Carlo/5. Monte Carlo Control.vtt
9.6 kB
4. Build an Intelligent Tic-Tac-Toe Agent/11. Tic Tac Toe Summary.vtt
9.6 kB
6. Dynamic Programming/4. Iterative Policy Evaluation in Code.vtt
9.5 kB
8. Temporal Difference Learning/4. SARSA.vtt
9.1 kB
2. High Level Overview of Reinforcement Learning and Course Outline/4. Defining Some Terms.vtt
9.0 kB
6. Dynamic Programming/11. Dynamic Programming Summary.vtt
8.8 kB
4. Build an Intelligent Tic-Tac-Toe Agent/10. Tic Tac Toe Code Main Loop and Demo.vtt
8.6 kB
5. Markov Decision Proccesses/2. The Markov Property.vtt
7.8 kB
2. High Level Overview of Reinforcement Learning and Course Outline/2. On Unusual or Unexpected Strategies of RL.vtt
7.7 kB
6. Dynamic Programming/8. Policy Iteration in Windy Gridworld.vtt
7.7 kB
3. Return of the Multi-Armed Bandit/8. UCB1.vtt
7.5 kB
9. Approximation Methods/1. Approximation Intro.vtt
7.4 kB
5. Markov Decision Proccesses/3. Defining and Formalizing the MDP.vtt
7.3 kB
3. Return of the Multi-Armed Bandit/1. Problem Setup and The Explore-Exploit Dilemma.vtt
7.3 kB
3. Return of the Multi-Armed Bandit/11. Nonstationary Bandits.vtt
7.3 kB
9. Approximation Methods/2. Linear Models for Reinforcement Learning.vtt
6.9 kB
4. Build an Intelligent Tic-Tac-Toe Agent/1. Naive Solution to Tic-Tac-Toe.vtt
6.7 kB
7. Monte Carlo/9. Monte Carlo Summary.vtt
6.6 kB
6. Dynamic Programming/9. Value Iteration.vtt
6.5 kB
9. Approximation Methods/3. Features.vtt
6.5 kB
6. Dynamic Programming/3. Designing Your RL Program.vtt
6.4 kB
2. High Level Overview of Reinforcement Learning and Course Outline/3. Course Outline.vtt
6.2 kB
10. Appendix/9. Python 2 vs Python 3.vtt
6.0 kB
4. Build an Intelligent Tic-Tac-Toe Agent/5. Tic Tac Toe Code Outline.vtt
6.0 kB
8. Temporal Difference Learning/2. TD(0) Prediction.vtt
6.0 kB
9. Approximation Methods/6. TD(0) Semi-Gradient Prediction.vtt
6.0 kB
7. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.vtt
5.7 kB
6. Dynamic Programming/7. Policy Iteration in Code.vtt
5.7 kB
3. Return of the Multi-Armed Bandit/10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.vtt
5.7 kB
5. Markov Decision Proccesses/4. Future Rewards.vtt
5.6 kB
7. Monte Carlo/1. Monte Carlo Intro.vtt
5.6 kB
3. Return of the Multi-Armed Bandit/5. Designing Your Bandit Program.vtt
5.5 kB
8. Temporal Difference Learning/6. Q Learning.vtt
5.5 kB
7. Monte Carlo/6. Monte Carlo Control in Code.vtt
5.5 kB
8. Temporal Difference Learning/5. SARSA in Code.vtt
5.2 kB
7. Monte Carlo/7. Monte Carlo Control without Exploring Starts.vtt
5.2 kB
9. Approximation Methods/7. Semi-Gradient SARSA.vtt
5.1 kB
9. Approximation Methods/8. Semi-Gradient SARSA in Code.vtt
5.1 kB
1. Welcome/2. Where to get the Code.vtt
5.0 kB
6. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.vtt
5.0 kB
3. Return of the Multi-Armed Bandit/6. Comparing Different Epsilons.vtt
5.0 kB
7. Monte Carlo/4. Policy Evaluation in Windy Gridworld.vtt
5.0 kB
6. Dynamic Programming/5. Policy Improvement.vtt
4.8 kB
5. Markov Decision Proccesses/8. Optimal Policy and Optimal Value Function.vtt
4.8 kB
4. Build an Intelligent Tic-Tac-Toe Agent/3. Notes on Assigning Rewards.vtt
4.6 kB
4. Build an Intelligent Tic-Tac-Toe Agent/6. Tic Tac Toe Code Representing States.vtt
4.6 kB
8. Temporal Difference Learning/8. TD Summary.vtt
4.4 kB
4. Build an Intelligent Tic-Tac-Toe Agent/12. Tic Tac Toe Exercise.vtt
4.1 kB
1. Welcome/1. Introduction.vtt
4.0 kB
5. Markov Decision Proccesses/1. Gridworld.vtt
3.8 kB
9. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.vtt
3.8 kB
8. Temporal Difference Learning/3. TD(0) Prediction in Code.vtt
3.7 kB
10. Appendix/1. What is the Appendix.vtt
3.5 kB
7. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.vtt
3.4 kB
10. Appendix/12. Where to get discount coupons and FREE deep learning material.vtt
3.4 kB
6. Dynamic Programming/6. Policy Iteration.vtt
3.2 kB
8. Temporal Difference Learning/7. Q Learning in Code.vtt
3.2 kB
8. Temporal Difference Learning/1. Temporal Difference Intro.vtt
3.1 kB
6. Dynamic Programming/10. Value Iteration in Code.vtt
3.1 kB
3. Return of the Multi-Armed Bandit/7. Optimistic Initial Values.vtt
3.1 kB
3. Return of the Multi-Armed Bandit/3. Epsilon-Greedy.vtt
3.0 kB
5. Markov Decision Proccesses/9. MDP Summary.vtt
2.5 kB
9. Approximation Methods/4. Monte Carlo Prediction with Approximation.vtt
2.2 kB
3. Return of the Multi-Armed Bandit/4. Updating a Sample Mean.vtt
2.1 kB
[FreeCourseLab.com].url
126 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!