搜索
[FreeCourseSite.com] Udemy - Introduction to Machine Learning & Deep Learning in Python
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Introduction to Machine Learning & Deep Learning in Python
磁力链接/BT种子简介
种子哈希:
02273c6646e727e4871a7c0002893ed0fb71aa92
文件大小:
1.83G
已经下载:
6521
次
下载速度:
极快
收录时间:
2020-03-02
最近下载:
2025-10-04
地址随时变,回家记住路
小野猫.com
黑猫警长.com
哆啦a猫.com
御猫.com
科目三.com
猫哭老鼠.com
女猫.com
☜☜☜找最新地址请保存左面网址
磁力链接
magnet:?xt=urn:btih:02273C6646E727E4871A7C0002893ED0FB71AA92
推荐使用
PIKPAK网盘
下载资源,PIKPAK是目前最好用网盘,10T超大空间,不和谐任何资源,支持无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
在线观看
世界之窗
含羞草
极乐禁地
91视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
91短视频
成人快手
抖阴破解版
ai色色
pilipili
草榴社区
哆哔涩漫
好色先生
疯马秀
TikTok成人版
悠悠禁区
波多
听泉鉴鲍
xvideo
外网天堂
PornHub
抖音Max
呦乐园
拔萝卜
糖心视频
麻豆Vlog
少女日记
资源截图
API Integration
显示图片
最近搜索
蜜桃臀
短剧
exploited18 lexi brooks
fc2-ppv-3155561
fc2-ppv-3
[ドラチェフ]ヌきヌき ずっぽしイズム
iptd 771
近亲
violet 2025
技师
onlyfans
妈妈儿子
万粉丝
kimetsu no yaiba
日本裸舞
old man young girl
jukujo
spankmonster.23.12.
sivr-443
天下最极品嫩穴之一,女神抠逼自慰喷水
98堂的
ipzz-545
ssni-358-c
91电影
cocoon
massagerooms.com part
约18岁
wkd-061
violet
edge systems
文件列表
17. Convolutional Neural Networks/8. Convolutional neural networks - illustration.vtt
74.0 MB
2. Installations/3. Installing Keras and TensorFlow.vtt
68.5 MB
8. Decision Trees/3. Decision trees introduction - information gain.mp4
49.2 MB
3. Linear Regression/2. Linear regression theory - optimization.mp4
44.3 MB
12. Neural Networks/29. Neural network example II - iris dataset.mp4
37.3 MB
3. Linear Regression/1. Linear regression introduction.mp4
27.7 MB
12. Neural Networks/12. Optimization - cost function.mp4
27.2 MB
6. Naive Bayes Classifier/7. Naive Bayes example - clustering news.mp4
24.5 MB
6. Naive Bayes Classifier/5. Text clustering - basics.mp4
23.2 MB
19. Course Materials (DOWNLOADS)/1.1 PythonMachineLearning.zip.zip
23.0 MB
7. Support Vector Machine (SVM)/5. Support vector machine example II - iris dataset.mp4
22.7 MB
4. Logistic Regression/4. Logistic regression example II- credit scoring.mp4
22.4 MB
14. Computer Vision - Face Detection/2. Viola-Jones algorithm.mp4
22.0 MB
7. Support Vector Machine (SVM)/1. Support vector machine introduction I - linear case.mp4
21.8 MB
12. Neural Networks/17. Gradient calculation I - output layer.mp4
21.3 MB
18. Recurrent Neural Networks/4. Vanishing and exploding gradients problem.mp4
20.6 MB
12. Neural Networks/13. Simplified feedforward network.mp4
20.4 MB
8. Decision Trees/2. Decision trees introduction - entropy.mp4
20.2 MB
12. Neural Networks/2. Axons and neurons in the human brain.mp4
20.2 MB
11. Clustering/6. K-means clustering - text clustering.mp4
19.8 MB
8. Decision Trees/7. The Gini-index approach.mp4
19.7 MB
12. Neural Networks/11. Feedforward neural networks.mp4
19.3 MB
16. Deep Neural Networks/9. Deep neural network implementation III.mp4
19.3 MB
18. Recurrent Neural Networks/9. Stock price prediction example II.mp4
19.3 MB
4. Logistic Regression/1. Logistic regression introduction.mp4
18.5 MB
12. Neural Networks/28. Neural network example I - XOR problem.mp4
18.5 MB
6. Naive Bayes Classifier/1. Naive Bayes classifier introduction I.mp4
18.3 MB
7. Support Vector Machine (SVM)/2. Support vector machine introduction II - non-linear case.mp4
18.1 MB
18. Recurrent Neural Networks/5. Long-short term memory (LTSM) model.mp4
17.9 MB
3. Linear Regression/4. Linear regression implementation I.mp4
17.5 MB
12. Neural Networks/5. Artificial neurons - the model.mp4
17.4 MB
17. Convolutional Neural Networks/10. Handwritten digit classification I.mp4
17.3 MB
7. Support Vector Machine (SVM)/6. Support vector machine example III - digit recognition.mp4
17.2 MB
12. Neural Networks/3. Modeling human brain.mp4
17.0 MB
14. Computer Vision - Face Detection/8. Face detection implementation II - CascadeClassifier.mp4
16.7 MB
16. Deep Neural Networks/8. Deep neural network implementation II.mp4
16.6 MB
17. Convolutional Neural Networks/11. Handwritten digit classification II.mp4
16.4 MB
16. Deep Neural Networks/2. Activation functions revisited.mp4
16.2 MB
18. Recurrent Neural Networks/13. Stock price prediction example VI.mp4
15.9 MB
16. Deep Neural Networks/7. Deep neural network implementation I.mp4
15.8 MB
12. Neural Networks/14. Feedforward neural network topology.mp4
15.4 MB
18. Recurrent Neural Networks/11. Stock price prediction example IV.mp4
15.3 MB
12. Neural Networks/6. Artificial neurons - activation functions.mp4
14.9 MB
11. Clustering/2. Principal component analysis example.mp4
14.7 MB
12. Neural Networks/16. Error calculation.mp4
14.4 MB
10. Boosting/3. Boosting introduction - equations.mp4
14.4 MB
11. Clustering/3. K-means clustering introduction I.mp4
14.3 MB
11. Clustering/9. Hierarchical clustering introduction.mp4
14.3 MB
8. Decision Trees/5. Decision trees implementation.mp4
14.3 MB
12. Neural Networks/15. The learning algorithm.mp4
13.9 MB
4. Logistic Regression/3. Logistic regression example I - sigmoid function.mp4
13.7 MB
10. Boosting/4. Boosting introduction - final formula.mp4
13.6 MB
18. Recurrent Neural Networks/3. Recurrent neural networks basics.mp4
13.5 MB
12. Neural Networks/25. Building networks.mp4
13.4 MB
12. Neural Networks/19. Backpropagation.mp4
13.3 MB
14. Computer Vision - Face Detection/3. Haar-features.mp4
13.3 MB
10. Boosting/5. Boosting implementation I - iris dataset.mp4
12.9 MB
14. Computer Vision - Face Detection/5. Boosting in computer vision.mp4
12.9 MB
16. Deep Neural Networks/4. Gradient descent stochastic gradient descent.mp4
12.9 MB
12. Neural Networks/26. Building networks II.mp4
12.6 MB
11. Clustering/10. Hierarchical clustering example.mp4
12.5 MB
8. Decision Trees/1. Decision trees introduction - basics.mp4
12.3 MB
4. Logistic Regression/6. Cross validation introduction.mp4
12.3 MB
9. Random Forest Classifier/2. Bagging introduction.mp4
12.3 MB
12. Neural Networks/7. Artificial neurons - an example.mp4
11.9 MB
9. Random Forest Classifier/4. Random forests example I - iris dataset.mp4
11.9 MB
3. Linear Regression/3. Linear regression theory - gradient descent.mp4
11.6 MB
16. Deep Neural Networks/11. Multiclass classification implementation I.mp4
11.6 MB
18. Recurrent Neural Networks/8. Stock price prediction example I.mp4
11.6 MB
11. Clustering/7. DBSCAN introduction.mp4
11.6 MB
4. Logistic Regression/5. Logistic regression example III - credit scoring.mp4
11.4 MB
12. Neural Networks/8. Neural networks - the big picture.mp4
11.3 MB
13. Machine Learning in Finance/3. Predicting stock prices logistic regression.mp4
11.3 MB
14. Computer Vision - Face Detection/7. Face detection implementation I - installing OpenCV.mp4
11.1 MB
7. Support Vector Machine (SVM)/4. Support vector machine example I - simple.mp4
11.0 MB
17. Convolutional Neural Networks/12. Handwritten digit classification III.mp4
10.9 MB
16. Deep Neural Networks/3. Loss functions.mp4
10.9 MB
10. Boosting/6. Boosting implementation II -tuning.mp4
10.9 MB
16. Deep Neural Networks/12. Multiclass classification implementation II.mp4
10.8 MB
6. Naive Bayes Classifier/6. Text clustering - inverse document frequency (TF-IDF).mp4
10.5 MB
5. K-Nearest Neighbor Classifier/6. K-nearest neighbor implementation II.mp4
10.4 MB
7. Support Vector Machine (SVM)/3. Support vector machine introduction III - kernels.mp4
10.4 MB
17. Convolutional Neural Networks/6. Convolutional neural networks - pooling.mp4
10.3 MB
9. Random Forest Classifier/1. Pruning introduction.mp4
10.3 MB
17. Convolutional Neural Networks/2. Convolutional neural networks basics.mp4
10.0 MB
14. Computer Vision - Face Detection/4. Integral images.mp4
10.0 MB
12. Neural Networks/22. Applications of neural networks II - stock market forecast.mp4
10.0 MB
5. K-Nearest Neighbor Classifier/1. K-nearest neighbor introduction.mp4
9.9 MB
11. Clustering/4. K-means clustering introduction II.mp4
9.9 MB
12. Neural Networks/23. Deep learning.mp4
9.9 MB
11. Clustering/5. K-means clustering example.mp4
9.9 MB
9. Random Forest Classifier/6. Random forests example III - parameter tuning.mp4
9.6 MB
12. Neural Networks/18. Gradient calculation II - hidden layer.mp4
9.6 MB
12. Neural Networks/21. Applications of neural networks I - character recognition.mp4
9.2 MB
3. Linear Regression/5. Linear regression implementation II.mp4
9.2 MB
14. Computer Vision - Face Detection/10. Face detection implementation IV - tuning the parameters.mp4
9.2 MB
9. Random Forest Classifier/3. Random forest classifier introduction.mp4
9.1 MB
13. Machine Learning in Finance/5. Predicting stock prices support vector machine.mp4
9.1 MB
5. K-Nearest Neighbor Classifier/3. K-nearest neighbor introduction - Euclidean-distance.mp4
9.0 MB
14. Computer Vision - Face Detection/9. Face detection implementation III - CascadeClassifier parameters.mp4
9.0 MB
11. Clustering/1. Principal component anlysis introduction.mp4
9.0 MB
6. Naive Bayes Classifier/2. Naive Bayes classifier introduction II - illustration.mp4
8.8 MB
17. Convolutional Neural Networks/7. Convolutional neural networks - flattening.mp4
8.8 MB
10. Boosting/1. Boosting introduction - basics.mp4
8.8 MB
16. Deep Neural Networks/5. Hyperparameters.mp4
8.7 MB
10. Boosting/2. Boosting introduction - illustration.mp4
8.6 MB
5. K-Nearest Neighbor Classifier/2. K-nearest neighbor introduction - lazy learning.mp4
8.5 MB
1. Introduction/2. Introduction to machine learning.mp4
8.4 MB
6. Naive Bayes Classifier/3. Naive Bayes classifier implementation.mp4
8.4 MB
13. Machine Learning in Finance/2. Fetching data from Yahoo Finance.mp4
8.3 MB
5. K-Nearest Neighbor Classifier/7. K-nearest neighbor implementation III.mp4
8.3 MB
11. Clustering/8. DBSCAN example.mp4
8.3 MB
17. Convolutional Neural Networks/5. Convolutional neural networks - kernel II.mp4
8.2 MB
16. Deep Neural Networks/1. Deep neural networks.mp4
8.0 MB
18. Recurrent Neural Networks/2. Why do recurrent neural networks are important.mp4
7.9 MB
18. Recurrent Neural Networks/14. Stock price prediction example VII.mp4
7.6 MB
13. Machine Learning in Finance/4. Predicting stock prices k-nearest neighbor.mp4
7.4 MB
5. K-Nearest Neighbor Classifier/5. K-nearest neighbor implementation I.mp4
7.3 MB
17. Convolutional Neural Networks/3. Feature selection.mp4
7.3 MB
18. Recurrent Neural Networks/12. Stock price prediction example V.mp4
7.1 MB
4. Logistic Regression/2. Logistic regression introduction II.mp4
7.0 MB
8. Decision Trees/6. Decision trees implementation II.mp4
7.0 MB
8. Decision Trees/6. Decision trees implementation II.vtt
7.0 MB
12. Neural Networks/4. Learning paradigms.mp4
6.8 MB
17. Convolutional Neural Networks/4. Convolutional neural networks - kernel.mp4
6.7 MB
14. Computer Vision - Face Detection/6. Cascading.mp4
6.5 MB
12. Neural Networks/27. Handling datasets.mp4
6.5 MB
17. Convolutional Neural Networks/8. Convolutional neural networks - illustration.mp4
6.3 MB
2. Installations/3. Installing Keras and TensorFlow.mp4
6.2 MB
14. Computer Vision - Face Detection/1. Computer vision introduction.mp4
6.0 MB
13. Machine Learning in Finance/1. Stock market basics.mp4
5.9 MB
15. Deep Learning/1. Types of neural networks.mp4
5.8 MB
12. Neural Networks/9. Applications of neural networks.mp4
5.5 MB
10. Boosting/7. Boosting vs. bagging.mp4
5.5 MB
18. Recurrent Neural Networks/6. Gated recurrent units (GRUs).mp4
5.3 MB
18. Recurrent Neural Networks/10. Stock price prediction example III.mp4
5.2 MB
12. Neural Networks/20. Backpropagation II.mp4
4.9 MB
2. Installations/1. Installing Anaconda.mp4
4.5 MB
9. Random Forest Classifier/5. Random forests example II - credit scoring.mp4
4.4 MB
8. Decision Trees/4. Decision trees introduction - pros and cons.mp4
4.4 MB
4. Logistic Regression/7. Cross validation example.mp4
4.4 MB
13. Machine Learning in Finance/6. Predicting stock prices - conclusion.mp4
3.7 MB
1. Introduction/1. Introduction.mp4
3.6 MB
2. Installations/2. Installing Spyder.mp4
2.9 MB
4. Logistic Regression/1. Logistic regression introduction.vtt
14.1 kB
14. Computer Vision - Face Detection/2. Viola-Jones algorithm.vtt
13.0 kB
18. Recurrent Neural Networks/5. Long-short term memory (LTSM) model.vtt
12.6 kB
12. Neural Networks/12. Optimization - cost function.vtt
12.1 kB
16. Deep Neural Networks/2. Activation functions revisited.vtt
11.0 kB
18. Recurrent Neural Networks/4. Vanishing and exploding gradients problem.vtt
10.8 kB
6. Naive Bayes Classifier/7. Naive Bayes example - clustering news.vtt
10.7 kB
8. Decision Trees/7. The Gini-index approach.vtt
10.3 kB
18. Recurrent Neural Networks/3. Recurrent neural networks basics.vtt
10.2 kB
7. Support Vector Machine (SVM)/1. Support vector machine introduction I - linear case.vtt
10.1 kB
8. Decision Trees/2. Decision trees introduction - entropy.vtt
10.1 kB
6. Naive Bayes Classifier/5. Text clustering - basics.vtt
9.7 kB
6. Naive Bayes Classifier/1. Naive Bayes classifier introduction I.vtt
9.7 kB
3. Linear Regression/1. Linear regression introduction.vtt
9.6 kB
12. Neural Networks/2. Axons and neurons in the human brain.vtt
9.6 kB
12. Neural Networks/17. Gradient calculation I - output layer.vtt
9.5 kB
17. Convolutional Neural Networks/11. Handwritten digit classification II.vtt
9.4 kB
9. Random Forest Classifier/2. Bagging introduction.vtt
9.3 kB
12. Neural Networks/13. Simplified feedforward network.vtt
9.2 kB
10. Boosting/4. Boosting introduction - final formula.vtt
9.2 kB
14. Computer Vision - Face Detection/3. Haar-features.vtt
9.1 kB
12. Neural Networks/11. Feedforward neural networks.vtt
9.1 kB
8. Decision Trees/1. Decision trees introduction - basics.vtt
9.0 kB
8. Decision Trees/3. Decision trees introduction - information gain.vtt
9.0 kB
7. Support Vector Machine (SVM)/5. Support vector machine example II - iris dataset.vtt
8.7 kB
8. Decision Trees/5. Decision trees implementation.vtt
8.6 kB
12. Neural Networks/3. Modeling human brain.vtt
8.5 kB
16. Deep Neural Networks/4. Gradient descent stochastic gradient descent.vtt
8.5 kB
3. Linear Regression/2. Linear regression theory - optimization.vtt
8.4 kB
4. Logistic Regression/4. Logistic regression example II- credit scoring.vtt
8.4 kB
12. Neural Networks/29. Neural network example II - iris dataset.vtt
8.3 kB
7. Support Vector Machine (SVM)/2. Support vector machine introduction II - non-linear case.vtt
8.3 kB
4. Logistic Regression/3. Logistic regression example I - sigmoid function.vtt
8.2 kB
3. Linear Regression/3. Linear regression theory - gradient descent.vtt
8.1 kB
12. Neural Networks/28. Neural network example I - XOR problem.vtt
8.0 kB
10. Boosting/3. Boosting introduction - equations.vtt
7.9 kB
11. Clustering/6. K-means clustering - text clustering.vtt
7.9 kB
14. Computer Vision - Face Detection/8. Face detection implementation II - CascadeClassifier.vtt
7.6 kB
3. Linear Regression/4. Linear regression implementation I.vtt
7.6 kB
7. Support Vector Machine (SVM)/6. Support vector machine example III - digit recognition.vtt
7.6 kB
12. Neural Networks/5. Artificial neurons - the model.vtt
7.6 kB
9. Random Forest Classifier/1. Pruning introduction.vtt
7.6 kB
16. Deep Neural Networks/8. Deep neural network implementation II.vtt
7.5 kB
16. Deep Neural Networks/7. Deep neural network implementation I.vtt
7.3 kB
11. Clustering/9. Hierarchical clustering introduction.vtt
7.2 kB
14. Computer Vision - Face Detection/5. Boosting in computer vision.vtt
7.2 kB
17. Convolutional Neural Networks/2. Convolutional neural networks basics.vtt
7.1 kB
17. Convolutional Neural Networks/10. Handwritten digit classification I.vtt
7.1 kB
11. Clustering/3. K-means clustering introduction I.vtt
7.1 kB
14. Computer Vision - Face Detection/4. Integral images.vtt
7.0 kB
16. Deep Neural Networks/9. Deep neural network implementation III.vtt
7.0 kB
17. Convolutional Neural Networks/6. Convolutional neural networks - pooling.vtt
6.9 kB
16. Deep Neural Networks/3. Loss functions.vtt
6.9 kB
5. K-Nearest Neighbor Classifier/6. K-nearest neighbor implementation II.vtt
6.8 kB
18. Recurrent Neural Networks/8. Stock price prediction example I.vtt
6.7 kB
12. Neural Networks/14. Feedforward neural network topology.vtt
6.7 kB
12. Neural Networks/6. Artificial neurons - activation functions.vtt
6.7 kB
18. Recurrent Neural Networks/11. Stock price prediction example IV.vtt
6.7 kB
12. Neural Networks/25. Building networks.vtt
6.7 kB
12. Neural Networks/16. Error calculation.vtt
6.7 kB
11. Clustering/2. Principal component analysis example.vtt
6.6 kB
5. K-Nearest Neighbor Classifier/1. K-nearest neighbor introduction.vtt
6.6 kB
4. Logistic Regression/5. Logistic regression example III - credit scoring.vtt
6.5 kB
17. Convolutional Neural Networks/5. Convolutional neural networks - kernel II.vtt
6.5 kB
9. Random Forest Classifier/3. Random forest classifier introduction.vtt
6.5 kB
16. Deep Neural Networks/1. Deep neural networks.vtt
6.4 kB
1. Introduction/2. Introduction to machine learning.vtt
6.4 kB
5. K-Nearest Neighbor Classifier/3. K-nearest neighbor introduction - Euclidean-distance.vtt
6.4 kB
10. Boosting/5. Boosting implementation I - iris dataset.vtt
6.4 kB
10. Boosting/2. Boosting introduction - illustration.vtt
6.4 kB
16. Deep Neural Networks/5. Hyperparameters.vtt
6.4 kB
11. Clustering/10. Hierarchical clustering example.vtt
6.3 kB
16. Deep Neural Networks/11. Multiclass classification implementation I.vtt
6.2 kB
12. Neural Networks/15. The learning algorithm.vtt
6.2 kB
4. Logistic Regression/6. Cross validation introduction.vtt
6.2 kB
12. Neural Networks/26. Building networks II.vtt
6.1 kB
12. Neural Networks/19. Backpropagation.vtt
5.9 kB
17. Convolutional Neural Networks/7. Convolutional neural networks - flattening.vtt
5.7 kB
16. Deep Neural Networks/12. Multiclass classification implementation II.vtt
5.7 kB
17. Convolutional Neural Networks/12. Handwritten digit classification III.vtt
5.6 kB
11. Clustering/5. K-means clustering example.vtt
5.6 kB
18. Recurrent Neural Networks/13. Stock price prediction example VI.vtt
5.6 kB
11. Clustering/7. DBSCAN introduction.vtt
5.5 kB
3. Linear Regression/5. Linear regression implementation II.vtt
5.5 kB
9. Random Forest Classifier/4. Random forests example I - iris dataset.vtt
5.3 kB
10. Boosting/6. Boosting implementation II -tuning.vtt
5.3 kB
6. Naive Bayes Classifier/6. Text clustering - inverse document frequency (TF-IDF).vtt
5.3 kB
9. Random Forest Classifier/6. Random forests example III - parameter tuning.vtt
5.2 kB
18. Recurrent Neural Networks/2. Why do recurrent neural networks are important.vtt
5.2 kB
20. DISCOUNT FOR OTHER COURSES!/1. 90% OFF For Other Courses.html
5.2 kB
6. Naive Bayes Classifier/3. Naive Bayes classifier implementation.vtt
5.2 kB
11. Clustering/8. DBSCAN example.vtt
5.1 kB
7. Support Vector Machine (SVM)/3. Support vector machine introduction III - kernels.vtt
5.1 kB
10. Boosting/1. Boosting introduction - basics.vtt
5.1 kB
6. Naive Bayes Classifier/2. Naive Bayes classifier introduction II - illustration.vtt
4.9 kB
12. Neural Networks/8. Neural networks - the big picture.vtt
4.9 kB
17. Convolutional Neural Networks/3. Feature selection.vtt
4.9 kB
17. Convolutional Neural Networks/4. Convolutional neural networks - kernel.vtt
4.9 kB
14. Computer Vision - Face Detection/6. Cascading.vtt
4.9 kB
12. Neural Networks/7. Artificial neurons - an example.vtt
4.9 kB
14. Computer Vision - Face Detection/7. Face detection implementation I - installing OpenCV.vtt
4.9 kB
12. Neural Networks/22. Applications of neural networks II - stock market forecast.vtt
4.8 kB
5. K-Nearest Neighbor Classifier/2. K-nearest neighbor introduction - lazy learning.vtt
4.8 kB
18. Recurrent Neural Networks/9. Stock price prediction example II.vtt
4.7 kB
12. Neural Networks/23. Deep learning.vtt
4.7 kB
5. K-Nearest Neighbor Classifier/7. K-nearest neighbor implementation III.vtt
4.7 kB
11. Clustering/4. K-means clustering introduction II.vtt
4.6 kB
7. Support Vector Machine (SVM)/4. Support vector machine example I - simple.vtt
4.6 kB
14. Computer Vision - Face Detection/9. Face detection implementation III - CascadeClassifier parameters.vtt
4.5 kB
12. Neural Networks/21. Applications of neural networks I - character recognition.vtt
4.5 kB
14. Computer Vision - Face Detection/1. Computer vision introduction.vtt
4.5 kB
4. Logistic Regression/2. Logistic regression introduction II.vtt
4.5 kB
15. Deep Learning/1. Types of neural networks.vtt
4.5 kB
13. Machine Learning in Finance/3. Predicting stock prices logistic regression.vtt
4.4 kB
13. Machine Learning in Finance/2. Fetching data from Yahoo Finance.vtt
4.4 kB
11. Clustering/1. Principal component anlysis introduction.vtt
4.3 kB
12. Neural Networks/18. Gradient calculation II - hidden layer.vtt
4.2 kB
18. Recurrent Neural Networks/6. Gated recurrent units (GRUs).vtt
4.0 kB
18. Recurrent Neural Networks/12. Stock price prediction example V.vtt
3.7 kB
13. Machine Learning in Finance/5. Predicting stock prices support vector machine.vtt
3.7 kB
13. Machine Learning in Finance/1. Stock market basics.vtt
3.6 kB
10. Boosting/7. Boosting vs. bagging.vtt
3.6 kB
5. K-Nearest Neighbor Classifier/5. K-nearest neighbor implementation I.vtt
3.4 kB
13. Machine Learning in Finance/4. Predicting stock prices k-nearest neighbor.vtt
3.4 kB
14. Computer Vision - Face Detection/10. Face detection implementation IV - tuning the parameters.vtt
3.3 kB
18. Recurrent Neural Networks/14. Stock price prediction example VII.vtt
3.3 kB
12. Neural Networks/27. Handling datasets.vtt
3.2 kB
12. Neural Networks/4. Learning paradigms.vtt
3.1 kB
8. Decision Trees/4. Decision trees introduction - pros and cons.vtt
2.9 kB
18. Recurrent Neural Networks/10. Stock price prediction example III.vtt
2.7 kB
4. Logistic Regression/7. Cross validation example.vtt
2.7 kB
1. Introduction/1. Introduction.vtt
2.5 kB
12. Neural Networks/9. Applications of neural networks.vtt
2.4 kB
2. Installations/1. Installing Anaconda.vtt
2.3 kB
12. Neural Networks/20. Backpropagation II.vtt
2.1 kB
9. Random Forest Classifier/5. Random forests example II - credit scoring.vtt
2.0 kB
13. Machine Learning in Finance/6. Predicting stock prices - conclusion.vtt
2.0 kB
2. Installations/2. Installing Spyder.vtt
1.9 kB
5. K-Nearest Neighbor Classifier/4. UPDATE bias and variance.html
333 Bytes
16. Deep Neural Networks/13. ARTICLE Optimizers Explained (SGD, ADAGrad, ADAM...).html
248 Bytes
17. Convolutional Neural Networks/13. ARTICLE Regularization (L1, L2 and dropout).html
232 Bytes
6. Naive Bayes Classifier/4. ----- TEXT CLASSIFICATION -----.html
193 Bytes
19. Course Materials (DOWNLOADS)/2.1 house_prices.csv.csv
183 Bytes
17. Convolutional Neural Networks/9. ----- HANDWRITTEN DIGITS -----.html
164 Bytes
18. Recurrent Neural Networks/1. ----- RNN THEORY -----.html
146 Bytes
16. Deep Neural Networks/10. ----- IRIS DATASET -----.html
141 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
17. Convolutional Neural Networks/1. ----- CNN THEORY -----.html
130 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
18. Recurrent Neural Networks/7. --- STOCK MAKRET ---.html
124 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
16. Deep Neural Networks/6. ----- XOR PROBLEM -----.html
117 Bytes
19. Course Materials (DOWNLOADS)/1. Course materials.html
70 Bytes
19. Course Materials (DOWNLOADS)/2. House prices csv file.html
55 Bytes
12. Neural Networks/24. ----- IMPLEMENTATION -----.html
53 Bytes
12. Neural Networks/10. ---- BACKPROPAGATION ----.html
42 Bytes
12. Neural Networks/1. ---- NEURAL NETWORKS INTRODUCTION ----.html
35 Bytes
温馨提示
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!